Нормы освещенности (таблицы): для производственных, административных и вспомогательных помещений

Нормы освещенности рабочих и производственных помещений

Нормы освещенности рабочих и производственных помещений.

Документы определяющие нормы освещенности

СНИП

Строительные нормы и правила проектирования освещения — это свод нормативных документов в сфере строительства, принятый органами исполнительной власти и содержащий обязательные требования, включающие в себя 4 части:

  1. Общие положения.
  2. Проектные нормы.
  3. Правила осуществления и приемки работ.
  4. Сметные правила и нормы.

СанПиН

Санитарные правила и нормы охватывают огромную сферу воздействия. Требования СанПин-а должны учитываться при разработке СНиП, технической и нормативной документации и согласовываться с Госсанэпидслужбой РФ. СанПин распространяются как на действующие производства, так и на проектирование, эксплуатацию строящихся предприятий и зданий.

Санитарные нормы и правила предъявляют серьезные требования к обеспечению условий жизнедеятельности человека и устанавливают норму безопасности факторов среды его обитания.

Данные требования должны быть учтены и при разработке СНиП, нормативных и технических актов, а также быть согласованными с ГосСанЭпидНадзором Российской Федерации.

Единицы измерения

Расчет нормы освещенности производится в Люксах (Лк ). Лк — это 1 люмен на м² Именно для этого показателя существуют международные и российские стандарты.
Стоит отметить, что разработанные параметры относятся к:

  • плоскости столов в случае учебного класса, кабинета и т. д.
  • полу, поверхности земли в случае лестничного проема, стадиона, открытой площадки, улицы и т.д.

Нормы освещенности офисных помещений

Нормы освещенности производственных помещений

а — постоянная работа, б — периодическая работа при постоянном пребывании в помещении, в — периодическая работа при периодическом пребывании в помещении, г — общее наблюдение за инженерными коммуникациями.

Нормы освещенности складских помещений

Нормы освещенности жилых помещений

Нормируемые показатели для улиц и дорог городских поселений с регулярным транспортным движением с асфальтобетонным покрытием

Нормируемые показатели для улиц и дорог сельских поселений

Освещенность территорий предприятий

Освещение автозаправочных станций и стоянок

Значения средней горизонтальной освещенности для подземных и надземных пешеходных переходов

Еср, лк, не менее

Нормы наружного архитектурного освещения городских объектов

Место расположения объекта освещения

Освещаемый объект

Площади столичного центра, зоны общегородских доминант

Памятники архитектуры национального значения, крупные общественные здания, монументы и доминантные объекты

Магистральные улицы и площади общегородского значения

Памятники архитектуры, истории и культуры, здания, сооружения и монументы городского значения

Парки, сады, бульвары, скверы и пешеходные улицы общегородского значения

Достопримечательные здания, сооружения, памятники и монументы, уникальные элементы ландшафта

Площади окружных и районных общественных центров

Памятники и монументы, здания и сооружения окружного и районного значения

Магистральные улицы и площади окружного и районного значения

Парки, сады, скверы, бульвары и пешеходные улицы окружного и районного значения

То же и характерные элементы ландшафта

Улицы и площади, пешеходные дороги местного значения

Памятники и монументы, достопримечательные здания и сооружения

Сады, скверы, бульвары местного значения

То же и характерные элементы ландшафта

Нормы для витринного освещения

Нормы освещенности для входов в здания

Нормы освещенности для аварийного освещения эвакуационных путей

Нормы освещенности для дежурного и охранного освещения

Нормативные показатели освещения основных помещений общественных, жилых, вспомогательных зданий

Освещаемые объекты

Высота плоскости над полом

Г – горизонтальная,

В – вертикальная, м

При комби-нированном освещении

При общем освещении

Административные здания (министерства , ведомства, комитеты, префектуры, муниципалитеты, управления, конструкторские и проектные организации, научно-исследовательские учреждения и т.п.)

1. Кабинеты и рабочие комнаты, офисы

2. Проектные залы и комнаты, конструкторские, чертежные бюро

Освещенность жилых, офисных и прочих помещений согласно нормативных документов

Самочувствие, состояние органов зрения, а, следовательно, и работоспособность и общее здоровье человека напрямую зависит от того, насколько яркий свет в помещении.

Это нужно обязательно учитывать при выборе типа светильника, его мощности и размещения.

Рассмотрим, какую документальную основу имеют нормы освещенности, какими единицами измерения они характеризуются, и каким должно быть их значение для разных объектов – дома, квартиры, офиса, склада, производства, охраняемого объекта, детских площадок.

Документальная основа

Уровень освещенности во многом зависит от условий, в которых пребывает человек, и характера его деятельности. Поэтому для разных помещений нормы различные. Чтобы каждый раз не подстраивать яркость света под субъективные ощущения сотрудников, посетителей и домочадцев, существуют установленные их значения, задокументированные в СНиПе и СанПиНе.

Согласно требованиям Строительных Норм и Правил под номером 23 – 05 – 2010, параметры освещенности закладываются уже на начальном этапе планировки зданий – в чертежах.

Таблица значения освещенности для разных объектов по СНиП:

Тип помещения Освещенность, люксы (лк)
Офис с компьютерной техникой 300
Комната жилого дома 150
Детская 200
Чертежное бюро 500
Конференц-зал 200
Библиотека, кабинет 300
Коридор, лестница, прихожая 50-75
Душевая, санузел, ванная 50
Бассейн, баня, сауна 100
Кладовая 50
Архив 75
Аварийная, охранная, дежурная подсветка Не менее 0,5
Лаборатория 300-500
Читайте также:  Осветительные приборы (для дома): назначение и классификация по типам

СанПиН

В отличие от СНиПа, СанПиН предписывает нормы по освещенности к уже имеющемуся зданию. Поэтому по его требованиям выполняют проверку, а по СНиПу – задают параметры строящемуся объекту. Так, яркость света регулируют согласно положению 2.2.1/2.1.1.1278-03 – гигиеническим требованиям к естественному, искусственному и совмещенному освещению общественных и жилых помещений.

Единицы измерения

Международно принятой единицей измерения освещенности является физическая величина люкс. Она равняется силе светового потока в один люмен, распределяемой на поверхность, площадью один квадратный метр. Проверка соответствия норме этого параметра осуществляется с помощью специального прибора – люксметра. Как само устройство, так и методика измерения, так и получаемые данные должны соответствовать российским нормативам ГОСТ Р 54944-2012 или межгосударственному стандарту ГОСТ 24940-96.

Измеряемые параметры проверяются по двум системам нормы освещенности:

  1. Плоскости настольного покрытия или его аналога (для библиотек, классов, аудиторий, кабинетов, лабораторий).
  2. Напольной поверхности (применительно к цехам, складам, уличным территориям, лестничным площадкам).

Рекомендация! Чтобы самостоятельно довести степень освещенности в конкретном помещении до нормы по СНиПу, необходимо изменить его площадь. Затем полученное значение умножить на параметр из табличных данных. Например, в детской комнате требуется 200 лк. Если она занимает 20 квадратных метров, значит, искомая величина будет равняться 200 х 20 = 4000 лм. Теперь можно поделить это число на значение люмен у одной лампочки (информацию можно узнать у производителя в ваттах и в люменах) и получим необходимое количество осветительных приборов для этого помещения.

Нормы освещенности рабочего места

Нормы по освещенности на разных рабочих местах колеблются в широких пределах (от 70 лк в архивных помещениях до более чем 500 лк в аналитических лабораториях) и полностью определяются спецификой деятельности человека. Световой поток должен быть:

  1. Достаточно, но не избыточно ярким – таким, чтобы при длительном нахождении в помещении не возникало раздражения глаз.
  2. Обеспечивать соблюдение правил техники безопасности.
  3. Давать возможность рассматривать детали без перенапряжения органов зрения.
  4. Создавать условия естественной цветопередачи предметов.
  5. Регулируемым и направляемым для обеспечения максимального комфорта на конкретном рабочем месте.

Нормы освещенности офисных помещений

Согласно строительным требованиям и санитарно-гигиеническим правилам освещенность в помещениях офиса должна соответствовать следующим нормам:

  1. Общего назначения с использованием компьютеров – 200-300 лк.
  2. Большого пространства со спонтанным размещением предметов мебели – до 400 лк.
  3. Аудитории для конференций – 200 лк.
  4. Помещения под чертежные работы – не менее 500 лк.
  5. Подсобные помещения, прихожие, лестницы, коридоры – 75-100 лк.

Приведенные значения характеризуют степень освещения рабочих мест прежде всего на уровне стола, то есть на высоте порядка 1-0,8 метров над уровнем поверхности пола.

Планируя освещенность в офисе, нельзя забывать о его многофакторности:

  1. Интенсивности общей и локальной систем подсветки.
  2. Равномерности светового рассеяния.
  3. Направленности светового потока.
  4. Образования бликов.
  5. Цветопередаче.
  6. Температурном спектре светильников.
  7. Пульсации ламп.

Внимание! Важно не только соблюдать нормы по освещенности в конкретном помещении, но также удобство расположения светильников относительно зрительной линии сотрудников/домочадцев. Оптимальным является показатель, когда защитный угол составляет не менее 50 градусов. Мощные лампы рекомендуется экранировать специальными плафонами с матовым стеклом.

Нормы освещенности производственных помещений

К осветительным нормам на производстве относится прежде всего – минимизация вредного воздействия светового излучения на зрительные органы персонала. От соблюдения этого правила будет во многом зависеть успех предприятия, техника безопасности и здоровье сотрудников. Специфика соблюдения норм СНиПа и СанПиНа для предприятий заключается в том, что под одной крышей может располагаться сразу несколько различных функциональных зон.

В каждой из них должны быть соблюдены нормы по освещенности. Поэтому здесь применяются две системы подсветки – общей и локальной. Первая может быть как естественной (за счет окон), так и искусственной, вторая, как правило, осуществляется исключительно за счет осветительных приборов. При этом интенсивность необходимого светового потока на производстве задается разрядом (от 1 до 7) зрительной работы и соответствующей точности:

  1. Наивысшей – от 1,5 до 5 тыс. лк.
  2. Очень высокой – от 1 до 4 тыс. лк.
  3. Высокой – 400 – 2 тыс. лк.
  4. Средней – 400-750 лк.
  5. Малой – 400 лк.
  6. Грубой – не более 200 лк.
  7. Наблюдение – 20-200 лк.
Читайте также:  Виды освещения: классификация по назначению, способу и источнику света

Абсолютное значение освещенности задается степенью присутствия работника и характером его работы – от постоянной работы и периодического пребывания до простого наблюдения за коммуникациями.

Нормы освещенности складских помещений

Согласно нормам СНиПа, в складских помещениях могут использоваться 5 категорий освещенности в соответствии с местом и способом хранения вещей и проводимых работ.

Способ хранения Для газоразрядных светильников, лк Для ламп накаливания, лк
На полу 75 50
На стеллажах 200 100
Разгрузка/погрузка, сортировка, перевозка 200 200
Выполнение аналогичных работ вне помещения 5 5
Кладовая 50 50

Для открытых мест хранения также существуют свои нормы освещенности, которые также определяются типом груза и способом его хранения:

  1. Контейнеры, лесоматериалы и прочие тяжелые предметы на поверхности грунта – 10 лк.
  2. Грузовые платформы и рампы в складах – 20 лк.
  3. Сыпучие и навалочные материалы на земле – 10 лк.
  4. Эстакады для погрузки – 20 лк.

Как в помещении склада, так и на улице могут использоваться три вида источника освещения – естественное, искусственное и вспомогательное (комбинированный вариант).

Нормы освещенности жилых помещений

В квартире, доме и ином жилом помещении нормы по освещенности зависят от назначения и особенностей их зоны и имеют следующие значения (лк):

  1. Кабинет – 250.
  2. Кухня – 250.
  3. Детская – 200.
  4. Спальня – 120.
  5. Прихожая – 60.
  6. Ванная – 250.
  7. Кладовка, подсобка, чердак, подвал, лестница – 60.

Уровень комфорта внутри дома должен быть максимален, и потому так важно правильно подобрать светильник для освещения, исходя из следующих критериев:

  1. Для квартиры лучше установить источник света с теплым спектром излучения. Его дают галогеновые, энергосберегающие и лампы накаливания.
  2. Не нужно использовать одну люстру, лучше – установить несколько приборов освещения. Это позволит выделить отдельные участки, а интерьер сделать более выразительным.

Совет! Разнообразить световое оформление квартиры и довести освещенность до нормы можно точечными светильниками, направив их на отдельные предметы (цветок, картину, декор).

Дежурное и охранное освещение

Аварийное, дежурное и охранное освещение не предполагает создание условий для проведения каких-либо зрительных работ. Его главная задача – обеспечение безопасности, сохранности и возможности эвакуации с объекта. В зависимости от назначения нормы могут варьироваться по следующим категориям:

  1. Охрана территории в ночное время (без специального оборудования) – 0,5 лк на уровне грунта или одной из сторон вертикальной плоскости на высоте около 0,5 метра.
  2. Обеспечение безопасности – 5% от рабочего освещения, но не меньше 2 лк в помещении и 1 лк на улице.
  3. При эвакуации – 0,5 лк внутри зданий, 0,2 лк снаружи.

Освещение детских площадок

В соответствии с требованием СНиПа и СанПиНа, детские учреждения, сады, открытие и закрытие площадки также должны иметь соответствующий уровень освещенности. Существуют следующие нормы:

  1. Физплощадки для игр – 10 лк.
  2. Аллеи, дорожки для велосипедной езды – 4 лк.
  3. Прогулочные тропинки – 1 лк.
  4. Игровые комнаты – 400 лк.
  5. Спальные помещения – 150 лк.
  6. Медкабинет – 200 лк.

В дошкольных учреждениях чтобы соблюсти нормы по освещенности различных помещений и площадок, лучше использовать комбинированные источники света.

С их помощью можно легко задать необходимую яркость и равномерность освещения, несмотря на пасмурный день, выросшую у окна растительность, сезонного колебания светового дня, особенностей здания.

Основные выводы

Нормы по освещенности для различного рода помещений строго регламентируются правилами СНиПа и СанПиНа. Его величина измеряется в люксах. При его расчете необходимо учитывать площадь, а также естественное освещение и равномерность распределения светильников. На производстве, в складских комплексах, квартирах и домах, офисах, охраняемых объектах и детских площадках есть свои установленные нормативы. Их соблюдение обеспечивает сохранность материальных ценностей, безопасность персонала, соблюдение технологического процесса, здоровье и комфорт человека.

Пульсация освещенности. Как рассчитать коэффициент пульсации

Определение коэффициента пульсации освещенности.

Пульсация – это периодическое изменение определенного параметра во времени. Для определения уровня таких изменений вводится понятие коэффициента пульсаций, который показывает отношение амплитуды пульсаций к средней величине данного параметра. В нашем случае, коэффициент пульсации освещенности – это отношение разности между максимальным и минимальным значением освещенности к ее среднему значению за время измерения:

Формула для расчета коэффициента пульсации

где Емин – зафиксированный минимум значения освещённости (Рис.1),
Емакс – зафиксированный максимум значения освещённости (Рис.1),
Еср – среднее значение освещённости за время измерения (Рис.1).

График пульсации освещенности.

Рис.1. Пульсации освещенности.

Определение среднего, максимального и минимального значения освещенности

Из Формулы (1) видно, что для вычисления коэффициента пульсации освещенности необходимо знать значения максимальной, средней и минимальной освещенности. Обычно прибор для измерения освещенности (люксметр) производит измерения всех значений освещенности и вычисление коэффициента пульсации автоматически. Хотя, например, люксметры “Эколайт” позволяют выводить комплексные результаты измерений на персональный компьютер при помощи бесплатной программы люксметр для Андроид или Windows “Эколайт-АП”. Это позволяет не только определить максимальное, среднее и минимальное значение освещенности, но и проанализировать изменение уровня освещенности во времени (“осциллограмму”)

Читайте также:  Закон отражения света: кто открыл, формула и математическая запись

Формулы для расчета коэффициента пульсации.

C 1 января 2013 года введен новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности». В том числе, приведена полная формула для расчета:

Формула расчета пульсации по ГОСТ.

где Т – время измерения.
Также, ГОСТ Р 54945-2012 устанавливает следующие требования к проведению измерений пульсации освещенности:

  • при расчете учитываются только пульсации с частотой ниже 300 Гц;
  • рабочая высота поверхности измерения – 0,8м от пола;
  • погрешность приборов не более 10%.

Формула (2) является наиболее полной для расчета коэффициента пульсаций. Однако она требует большого объема вычислений и не всегда реализуема на практике, особенно в приборах-пульсметрах старых версий. Поэтому, иногда, применяются «упрощенные» методы расчета пульсации. Например, используют следующую формулу:

Упрощенная формула расчета пульсации.

Особенности расчета коэффициента пульсации.

В случае, когда форма пульсаций близка к синусоидальной (например, при работе ламп накаливания или люминесцентных ламп, с подключением через ЭмПРА), расчёты по формуле (3) совпадают с расчётами по формуле (2). Однако, чем сильнее форма пульсаций отличается от гармонической, тем сильнее расходятся результаты расчетов по этим формулам. Например, при импульсном питании, часто применяемом в современных энергосберегающих лампах, коэффициент пульсации, рассчитанный по формуле (2), может намного превысить значение 100% (в некоторых случаях можно получить результат 200%, 300% и даже больше), в то время, как Кп, рассчитанный по формуле (3) никогда не сможет превысить 100% (при Емин=0, см.Рис.1). Итак, расчет коэффициента пульсации по упрощенной формуле (3) недопустим в следующих случаях:

  • применение ЭПРА;
  • применение регуляторов мощности (диммеров и т.п.);
  • применение электронных драйверов;
  • измерение пульсации мониторов.

При помощи бесплатной программы “Эколайт-АП” и мы провели измерения и анализ пульсации от:

ламп разлиных типов, с результатами измерений можно ознакомиться в разделе “Пульсация ламп”

мониторов различных типов и множества моделей, с результатами измерений можно ознакомиться “Пульсация мониторов”

Понравился материал? Поделитесь им в соцсетях:

Пульсация светового потока

На многие вещи, связанные с повседневной деятельностью человека, зачастую влияет качество света—это давно известный факт. Иногда мы даже не задумываемся о последствияхпроцессы проходят на подсознательном уровне, почти как во сне. Как снизить нагрузку на мозг в четыре раза и увеличить эффективность труда, а также о других эффектах пульсации светового потокаподробнее в нашей статье.

В двух словах

Пульсация светового потока = эффект мерцания.

Снижение пульсаций источника света является важной составляющей в борьбе за качество света. В последнее время одним из заметных трендов на рынке LED-освещения становится гонка за нулевым значением коэффициента пульсации. Так ли это важно на самом деле, давайте разбираться

Подробнее о коэффициенте пульсации

Пульсация светового потока—это одна из основных характеристик источников искусственного освещения, отражающая частоту мерцания и качество света в целом. Характеризуется данный эффект специальным параметром—коэффициентом пульсации.

Для тех, кто любит формулы и ГОСТы

Коэффициент пульсацииэто относительная величина и измеряется она в % от разности максимального и минимального значений освещенности в люксах, приведенная к усредненному значению освещенности за период.

В России ограничения по значениям Kп светильников регламентируются СНиП 23-05-95, ГОСТ 17677-82 и СанПиН 2.2.2/2.4.1340-03. В Европе и США подобных норм не существует. Основные ограничения, существующие в России:

Пульсации освещенности, частотой до 300 Гц, на рабочих местах не должны превышать 20%, в некоторых случаях (при работе с ПЭВМ) – 5%.

В местах временного пребывания (коридоры, лестницы, переходы и т.п.) уровень пульсации не нормируется.

  • Не нормируются пульсации освещенности, частота которых превышает 300 Гц.
  • Предыстория появления эффекта

    Физика работы LED такова, что включение диода возможно только при определенном значении силы тока и его направлении. Для подключения светодиодных светильников в цепях переменного напряжения (бытовой сети) и управления их яркостью мы, как специалисты-светотехники, вынуждены применять специальные пускорегулирующие устройства—LED-драйверы и диммеры с широтно-импульсной модуляцией—ШИМ (о ней читайте в нашей следующей статье).

    И здесь все просто—колебания тока на выходе таких устройств порождает колебания светового потока LED, именно поэтому применение пускорегулирующей аппаратуры в системах освещения порождают подобный специфический эффект.

    Читайте также:  Закон преломления света: формулировка и формула и описание явления преломления

    В этом плане обычная лампа накаливания подвержена тем же самым воздействиям со стороны питающей сети. Однако, она более инертна по своим характеристикам, поэтому мерцания частотой в 50 Гц фактически отсутствуют.

    Теперь немного о том, как пульсация света может влиять на самочувствие человека и чем она опасна.

    О пороге восприятия частоты пульсаций света и их влияние на человека

    В большинстве случаев человеческий глаз не фиксирует пульсацию источника искусственного света, поскольку существует определенный порог восприятия, связанный с особенностями нашего зрения и частотой самих пульсаций.

    Многократными исследованиями доказано, что критическая частота восприятия пульсаций—300 Гц, при достижении этого значения человеческий мозг перестает воспринимать их как таковые. При частоте до 120 Гц мозг на подсознательном уровне воспринимает пульсацию как некий “месседж” и пытается его обработать. Считается, что таким образом, человек воспринимает до 4 частот мерцаний от различных источников света, что в значительной степени повышает “загруженность” его центрального вычислителя—головного мозга.

    Можно выделить два вида влияний пульсации светового потока на человека: краткосрочные и долгосрочные, см. таблицу 1.

    Таблица 1

    Влияние пульсаций на человека

    Краткосрочное влияние

    Долгосрочное влияние

    усталость органов зрения

    снижение внимания

    утомляемость организма

    замедление активности мозга

    тошнота и нарушение пищеварения

    нарушение циркадных ритмов

    депрессия

    бессонница

    патология сердечно-сосудистой системы

    патология органов зрения

    патология ЖКТ

    эректильная дисфункция

    расстройство НС

    Стробоскопический эффект — положительные и отрицательные стороны

    Наиболее опасным последствием пульсации света можно назвать стробоскопический эффект на промышленных объектах, где присутствуют быстро движущиеся открытые механизмы и детали машин. Частота их вращения может совпасть с частотой мерцания света и может показаться, что механизм неподвижен, что зачастую является причиной серьезных травм и повреждений, см.рисунок ниже

    Эффект мерцания источника света может быть зафиксирован при фото- и видеосъемке на коротких выдержках—тот эффект, о котором было рассказано в самом начале статьи. Данный неприятный момент может испортить не только несколько фотографий, но и испортить имидж студий и съемочных павильонов.

    Световое оборудование для клубов и концертных площадок

    Лазерные и диодные стробоскопы—это одни из самых распространенных световых девайсов, которые любят применять в клубах и на дискотеках. Интересный кратковременный световой эффект повышает настроение посетителям и является абсолютно безвредным для человека.

    В заключение от Aledo

    В последнее время нам все чаще приходится слышать о том, что на рынке появляются светильники с коэффициентом пульсации 1-2%—это результат борьбы производителей LED за конкурентные преимущества, о которых мы писали в самом начале статьи.

    Наша позиция в этом вопросе такова: коэффициент пульсации источника света 20%—это абсолютно нормальное и допустимое значение, обозначенное в ГОСТе и СанПиНе. Конечно, существуют условия труда и быта человека, где необходимо максимальное снижение Kп (до 5% и ниже), но это весьма частные и редкие случаи. Мы всегда стараемся анализировать проект, исходим из реальных потребностей наших клиентов и предлагаем наиболее рациональные варианты для систем освещения.

    Кстати, в шоуруме kaledoscop есть специальный прибор, который мы используем для тестирования наших решений и поставляемого оборудования,—пульсометр. Приезжайте к нам в гости, за чашкой кофе или чая, мы сможем показать на деле, что такое пульсация светового потока и какие решения существуют в России и мире для снижения подобного эффекта.

    Норма пульсации освещенности.

    Норма пульсации освещенности или коэффициент световой пульсации — один из основных элементов, определяющих качество искусственного освещения. Для расчета коэффициента пульсации ламп специалисты производят замеры уровня освещенности с одновременной фиксацией значений, которые затем используются при необходимых расчетах: минимального, среднего, максимального.

    По ГОСТ Р 54945-2012 уровень пульсации освещенности характеризует коэффициент пульсации (Кп). Он представляет собой отношение разности между максимальным и максимальным значениями освещенности к среднему значению освещенности за время измерения.

    Ф. 1. Формула расчета коэффициента пульсации по ГОСТ Р 54945-2012

    где Емин – зафиксированный минимум значения освещённости (см. Рис.2),
    Емакс – зафиксированный максимум значения освещённости (см. Рис.2),
    Еср – среднее значение освещённости за время измерения (см. Рис.2)

    Норма пульсации освещенности по регламентирующим документам

    В Актуализированная редакция СНиП 23-05-95* (СП 52.13330.2011 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*) указывается, что коэффициент пульсаций освещённости рабочей поверхности рабочего места не должны превышать 10% – 20% (в зависимости от степени напряжённости работы), при этом нормируются только те пульсации, частота которых ниже 300Гц.

    Читайте также:  Скорость света в вакууме: приблизительное значение и где она используется

    В ГОСТ 17677-82 “Светильники. Общие технические условия” приведены требования к рабочей частоте пускорегулирующей аппаратуры (ПРА) светильников с люминесцентными лампами. Она должна быть не ниже 400 Гц.

    В СанПиН 2.2.2/2.4.1340-03 “Гигиенические требования к персональным электронно-вычислительным машинам и организации работы” указывается, что коэффициент пульсаций освещения при работе на ПЭВМ не должен превышать 5%.

    Какой должна быть норма пульсации освещенности.

    Норма пульсации освещенности, которую нужно выполнять, установлено верхнее ограничение на параметр коэффициента пульсации. Там, где организовано рабочее место сотрудника, он не должен превышать 20%. Например, для работников, которые заняты напряженным зрительным трудом он не должен превышать 5%.

    Где нужно измерять Норму пульсации освещенности?

    Необходимо измерять коэффициент пульсации освещения лампы в детских и медицинских учреждениях, а также на всех других предприятиях, которые переходят на светодиодные лампы после ламп, содержащих ртуть, в соответствии с правилами производственного контроля сразу после замены ламп, а затем один раз. год. Если тип используемых ламп не изменился, то мониторинг проводится с помощью лаборатории один раз в год, в то время как организация должна хранить отчеты о лабораторных испытаниях для проверки контролирующими органами.

    Исследования помогут определить, являются ли лампы поддельными, представляют ли они угрозу для здоровья человека, могут ли эти лампы использоваться на рабочих местах, в салонах.

    Осветительные приборы имеют недостатки, которые могут существенно повлиять на здоровье сотрудников или пользователей компьютеров, компьютерной техники. Потребители и работодатели все чаще обнаруживают увеличение пульсации источника света и результирующую пульсацию света. Эксперты показали в ходе практических исследований, что при уровне пульсации 5-8% уже есть признаки нарушения мозговой деятельности, которые могут вызвать стресс, бессонницу, которые приводят организм к более серьезным заболеваниям, включая сердечно-сосудистая система, опухоли. Основная опасность заключается в том, что наш организм напрямую не ощущает влияния пульсации света от светодиодов, люминесцентных ламп или других ламп, поэтому необходимо проверять коэффициент пульсации лампы в аккредитованной лаборатории. Соответствие стандартам помогает предотвратить или уменьшить вредное воздействие на человека.

    Чем измерять норму пульсации освещенности?

    Чтобы определить коэффициент пульсации, вы можете сделать это двумя способами: выполнить независимый анализ или использовать компьютерную программу.
    Самыми популярными калькуляторами пульсации являются Ecolight – 01 (02) и Lupin. Если вам нужно проанализировать данные на компьютере, вы можете использовать специальное программное обеспечение – Ecolight-AP.

    Также напоминаем, что с 01.01.2013 г. появился новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента волнистости освещения. «Наконец, ВПЕРВЫЕ (. – до сих пор производители внедрили алгоритм расчета пульсации« кого это волнует? ») В ГОСТ Р 54945-2012 четко и полностью сформулирована концепция. коэффициента пульсации освещенности, указывает диапазон частот пульсации, подлежащей измерению (до 300 Гц), и описывает метод измерения коэффициента пульса.
    По новому ГОСТ Р 54945-2012 далеко не все люксметры-пульсметры, представленные на рынке могут быть использованы для измерения пульсаций освещенности. Мы рады сообщить нашим настоящим и будущим клиентам, что люксметры-пульсметры-яркомеры «Эколайт-01» и «Эколайт-02» прямо указаны в тексте ГОСТ Р 54945-2012, как приборы ПОЛНОСТЬЮ(!) удовлетворяющие его требованиям.

    Требования при измерении нормы пульсации

    • для измерений коэффициента пульсации освещённости при отсутствии фонового естественного освещения: не более 12 % ,

    • для измерений коэффициента пульсации освещённости при максимально допустимом по данной методике фоновом естественном освещении: не более 18 %.

    Пульсации яркости: факты, механизмы и нормы

    Пульсации светового потока источников света ограничиваются санитарными нормами, и с каждым годом уменьшаются. А на пульсации яркости экранов санитарных норм нет. При том, что в мониторы и телефоны люди уже смотрят дольше, чем на офлайн-сцены.

    Разберемся, как и на что влияет пульсация яркости наблюдаемых сцен, и как в действительности пульсируют источники света и экраны.

    Механизм воздействия пульсаций яркости на здоровье человека

    Энцефалограмма человека с характерным пиком на частоте пульсирующего освещения еще с 60-х годов публиковалась как доказательство вредного действия пульсаций освещенности на нервную систему.

    Слева — контрольная ЭЭГ, справа — с пиком на частоте 120 Гц при включении освещения, пульсирующего с частотой 120 Гц.

    Сегодня же, по мнению нейрофизиологов, навязывание нервной системе высокочастотного дополнительного ритма повредить не может. Картинка всего лишь показывает восприимчивость нервной системы к пульсациям освещенности. Вылезает на ЭЭГ пик с частотой изменения значимого параметра окружающей среды — молодец, здоров!

    Читайте также:  Кривая силы света: типы, методы правильного подбора

    Однако, при длительной напряженной зрительной работе выраженные пульсации освещения действительно вредны, так как мешают движению взгляда.

    Застывший взгляд слеп, чтобы видеть, нужно взгляд перемещать. Движение взгляда по лицу одной из самых красивых женщин в истории, Альфред Ярбус, 1965г.

    Взгляд человека перемещается скачкообразно — саккадами. Пульсации на частотах 100 Гц и более сознанием не воспринимаются, но провалы освещенности в короткий миг перескока мешают взгляду «зацепиться» за новую точку.

    Один и тот же эффект проявляется при быстром движении объекта (карандашный тест), сдвиге фотоаппарата, и быстром перемещении взгляда: наблюдатель видит прерывистый след из фантомов освещенных объектов. Это затрудняет перемещение взгляда на намеченную цель, саккады становятся более частыми и хаотичными.

    Появление фантомов перемещающихся объектов при пульсирующем освещении.

    Наиболее полным и достоверным обобщением современных данных о влиянии пульсаций освещения на здоровье человека является документ “IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers”. Исследования, на которые ссылается документ, показывают следующее:

    1. Высокочастотные пульсации освещенности вызывают повышенную усталость, снижение производительности зрительной работы, усталость глаз, головные боли и тревожность.
    2. С увеличением глубины пульсаций выраженность негативного воздействия растет.
    3. С ростом частоты риски негативного воздействия снижаются.

    Самая оптимистичная оценка верхней границы воздействия пульсаций по частоте основана на том, что характерное время развития потенциала действия нервного волокна человека 5 мс, что соответствует ширине полосы пропускания 200 Гц. Отечественный ГОСТ предписывает не учитывать пульсации или гармоники сложных пульсаций на частота более 300 Гц. Однако на практике сложная система из большого числа взаимодействующих нейронов реагирует на частоты до килогерца.

    IEEE вводит следующие критерии уровней риска:

    1. низкому уровню риска на частотах менее f = 90 Гц соответствует уровень пульсаций, в процентах не превышающий 0,025⋅f; более 90 Гц — не превышающий 0,08⋅f. При частотах более 1250 Гц ограничений на уровень пульсаций нет. Для актуальной частоты 100 Гц уровни пульсации, соответствующие низкому уровню риска, — не выше 8 %.
    2. безопасный уровень глубины пульсаций при котором нет статистически выявляемого воздействия — 0,01⋅f для частот ниже 90 Гц и 0,0333⋅f для частот выше 90 Гц. Для частоты 100 Гц заведомо безопасный уровень пульсаций — не выше 3 %.

    Что о пульсациях яркости говорит закон

    Отечественные стандарты нормируют «просто пульсации» на частотах до 300 Гц, и это правильно, так как заставить миллионы людей учитывать спектральные особенности пульсирующего освещения нереально, хорошо бы учли хоть одну цифру.

    Но одной цифры все равно не получилось, санитарные нормы еще со времен СССР регламентируют уровень пульсаций в разных ситуациях не выше 20 %, 15 %, 10 % и 5 %. И со временем количество нормативных документов, указывающих в каких случаях допустимы какие пульсации, становится только больше.

    Но во внегосударственных стандартах можно и нужно использовать упрощенные нормы. Достаточно принять, что в местах постоянного пребывания людей допустимы пульсации не выше 3 %. Это и обосновано, и заведомо соответствует всем санитарным нормативам, и в большинстве случаев выполняется автоматически.

    Еще пять лет назад добиться пульсаций яркости, например, светодиодного светильника, менее 15 % было чрезвычайно трудно. И сегодня попадаются экземпляры с уровнем пульсаций в десятки процентов, особенно часто среди малогабаритных ламп (типа G9 и т.п.) из-за трудностей размещения полнофункционального драйвера в столь в малом объеме да еще и за малые деньги. Но для типичного современного добросовестно изготовленного светодиодного светильника пульсации освещенности на уровне 1-2 % — норма. И превосходная норма!

    Но не стоит быть перфекционистом. Требовать сегодня уровень пульсации 0,5 % и менее — значит напороться на завышенную цену, а подчас и на обман. Неоправданно дорого производить что-то идеальное, это подтвердит любой разработчик. Покупатель же общается не с разработчиком, а с менеджером, чья работа обещать «— да, конечно, у нас ровно то, что вам нужно».

    Реальные значения пульсаций яркости

    В 2015 году я в должности и.о. главного редактора журнала «Светотехника» курировал исследование фактических параметров светотехнических приборов рынка. В том числе я передал в LampTest.ru 5 штук обследованных в аккредитованной лаборатории лампочек, и убедившись, что результаты измерений AlexeyNadezhin совпадают с нашими, включили в статистику данные по более чем четыремстам лампочкам из его проекта.

    И со студентами кафедры Светотехники МЭИ измерили спектр и глубину пульсаций 111 разных моделей мониторов найденных в комнатах общежития МЭИ. В работе использовали внесенный в реестр средств измерений и поверенный люксметр-яркомер-пульсметр «еЛайт02».

    Читайте также:  Коэффициент пульсации освещенности: определение норм и способы снижения

    И вот что выявили:

    Типичный уровень пульсаций уличных натриевых светильников — около 30 %. Типичный уровень пульсаций светильников с люминесцентными трубчатыми лампами 4×18 с «классическим» ЭМПРА, стоящих в большинстве учреждений и учебных заведений — более 40 %.

    Типичный люминесцентный светильник пульсирует на удвоенной частоте сетевого напряжения 100 Гц с глубиной пульсаций более 40 %.

    Лампы накаливания пульсируют меньше люминесцентных, но тоже будь здоров. Данные LampTest согласуются с данными, полученными прямым измерением в лаборатории компании Эко-Е ее техническим директором Сергеем Мамаевым, куда я для измерений привез сумку разнообразных лампочек накаливания, купленных в крупных сетевых магазинах. С ростом мощности свечение нити накаливания становится более инерционным, уровень пульсаций падает, но все равно остается выше приемлемого значения.

    Пульсации светового потока ламп накаливания разных мощностей. Здесь и далее зеленым выделен заведомо безопасный уровень по критериям IEEE.

    Компактные люминесцентные лампы (КЛЛ) пульсируют примерно вдвое меньше ламп накаливания (6-10% против 15-20%). Светодиодные лампы бывают двух разновидностей — большая часть очень хороша, меньшая пульсирует как угодно вплоть до 100 % (ужас-ужас). Светодиодные светильники всех мастей большей частью хороши, пульсации низкие.

    Коэффициент пульсации исследованных КЛЛ (а), СД ламп (б) и офисных светодиодных светильников, уличных и промышленных светодиодных светильников (г).

    В 2016-2017 годах я совмещал должность руководителя производственной светотехнической лаборатории и измерил множество светильников разных производителей. Сегодня уровень пульсаций светодиодного светильника выше 10 % вызывает удивление. Значения до 3 % — фактическая норма.

    И эти изменения произошли стремительно. Недавно попали в руки БУ-шные экземпляры одного из лучших трековых светильников для освещения музеев — ERCO. Эффективность около 90 лм/вт при КЦТ=3000 К и Ra=90 — уровень для ERCO двух-трехлетней давности, но приемлем и сегодня. Но что такое: поворачиваю гониометр со светильником и вижу на экране свистопляску, проверяю уровень пульсаций — более 30 %. Породистые источники питания Tridonic из этих светильников придется выкидывать и заменять на любые современные с пульсацией

    Ну и самое интересное — пульсации яркости экранов мониторов. Наиболее жестко уровни пульсаций отечественные нормативы ограничивают в помещениях с дисплеями из-за следующего обстоятельства: если освещать сцену одновременно двумя пульсирующими на разной частоте источниками, на нервную систему воздействуют и обе эти частоты и целый букет их производных, включая низкочастотную разницу. Еще в СССР не знали как бороться с пульсацией яркости мониторов и привычно «завернули гайки» светотехникам.

    Пульсация яркости мониторов и экранов вызвана ШИМ-регулировкой подсветки, поэтому на 100 % яркости пульсация как правило равна нулю, и при уменьшении яркости растет. Для примера у монитора AOC i2769vm при максимальной яркости пульсации отсутствуют, при 95% яркости пульсации составляют 8,5%; при половинной яркости (см. рисунок ниже) достигают 100%; а при яркости меньше половины глубина пульсаций все также 100%, но между вспышками света появляются паузы темноты.

    Характер пульсаций яркости экрана AOC i2769vm. Здесь и ниже приведены скриншоты программы Эколайт-АП

    Типичный пример характера и спектра пульсаций экрана смартфона на примере Samsung S7 Edge — при понижении яркости пульсации растут с 5 % до 69 %, и с 60 Гц на 241 Гц меняется частота основной гармоники. Возможно изменение частоты связано с конструктивной особенностью самосветящихся AMOLED-экранов. Отметим, что повышение частоты по критериям IEEE не вывело параметры пульсаций экранов из опасной зоны.

    Форма (вверху) и спектр пульсации (внизу) яркости экрана Samsung S7 Edge при уровнях яркости 100 % и 50 %.

    Поэтому перед измерениями для статистики яркость мониторов и экранов смартфонов выставлялась на 50 %. Результаты катастрофические. В зеленую и даже в желтую зону попала лишь незначительная доля экземпляров. У части экранов основная гармоника на частоте менее 70 Гц, что по данным IEEE приводит к выраженным недомоганиям, головным болям и даже эпилептическим припадкам.

    Частота и глубина пульсации экранов мониторов, ноутбуков и носимой электроники.

    Является ли пульсация экрана телефона катастрофой? Нет, но при чтении желательно выставлять яркость на 100 %, а в транспорте смотреть не в телефон, а на девушек.

    Примечание 1: Пост является популярным изложением результатов, опубликованных в Оптическом журнале на русском языке и в OSA publishing на английском языке.
    Примечание 2: Если вы в Москве, и имеете доступ к большому объему включенных мониторов и телефонов (шоурум магазина электроники?), предлагаю все ваши устройства перемерить.

    Пульсации освещенности: проблемы, метрология и расчет

    Пульсации освещенности: проблемы, метрология и расчет.
    Современные системы освещения имеют множество преимуществ перед устаревшими лампами накаливания и даже газоразрядными лампами, среди которых выделяются высокая энергоэффективность, большой срок службы, низкая стоимость обслуживания, более широкие и новые сферы применения и многое другое. Поэтому переход на современное энергосберегающее освещение неизбежен. Однако современным системам освещения на современном этапе свойственны свои недостатки – это, во-первых, относительно высокая цена, недостаток опыта правильного применения, большая доля некачественной продукции, несоответствие параметров источников света действующим нормативам. Очень часто, как показывает практика, наши клиенты сталкиваются с проблемой повышенных пульсаций светового потока и вытекающей из этого пульсации освещенности.

    Сергей Мамаев, mamser72@gmail.com
    технический директор ООО «Эко-Сфера»
    Окончил в 1996г. Московский Инженерно-Физический Институт по специальности «Микроэлектроника». 1993-2008 г. — ведущий разработчик и технический директор приборостроительной компании «НТМ-Защита», с 2008г. соучредитель и технический директор приборостроительной компании «Эко-Сфера». Участие в разработке и серийном выпуске более 20 измерительных приборов и систем автоматизации.

    Читайте также:  Интенсивность света: формула через длину волны и единицы измерения

    Пульсации освещенности и их влияние на организм человека

    Требования нормативных документов к уровню пульсации освещенности мы рассмотрим чуть позже. Предварительно хотелось бы вкратце затронуть проблему влияния пульсаций света на организм человека. К сожалению, многие производители систем освещения и инженеры по освещению относятся к этим требованиям как к бесполезному раздражающему фактору, усложняющему им жизнь. Однако, исследования воздействия пульсирующего света на организм человека, которые проводились с середины ХХ века, показали, в частности, что мозг человека воспринимает пульсации света, частотой до 300 Гц. Например, в работах [1] приводится ЭЭГ мозга человека (Рис.1), на которой видно, что при воздействии пульсирующего света на ЭЭГ мозга появляются навязанные пики активности с частотой пульсации света. Эти навязанные ритмы подавляют естественные биоритмы нервной системы (в данном примере, частота пульсаций света составляла 120Гц).

    Рис. 1. ЭЭГ человеческого мозга в затемненной комнате (а), ЭЭГ человеческого мозга в комнате, освещенной лампами, с частотой пульсации светового потока 120 Гц

    В ходе проведения тех же экспериментов было установлено, что при уровне пульсаций света 5-8% уже возникают признаки расстройства нормальной электрической активности мозга, а пульсации, глубиной 20%, вызывают такой же уровень расстройств нормальной активности мозга, как и пульсации освещенности с глубиной 100%. Также была определена критическая частота пульсаций света 300 Гц, выше которой человеческий организм воспринимает пульсирующий свет как постоянный. Аналогичные результаты были получены в работе [2] . Надо отметить, что видимые (частотой до 60…80 Гц) и невидимые глазом (от 60…80 Гц и до 300 Гц) пульсации света оказывают разное (визуальное и невизуальное) воздействие.

    Видимые глазом пульсации освещенности вызывают прямое зрительное раздражение, мы их ощущаем, они доставляют дискомфорт, утомляют зрение, нервную систему и мозг. Однако мы их видим и пытаемся сознательно или на уровне подсознания бороться с ними – ограничивать время пребывания в помещениях с пульсирующим светом, рефлекторно настраиваем зрение и мозг на ограничение влияния таких пульсаций, в конце концов меняем раздражающую нас лампу или светильник на другую, с отсутствующими пульсациями. Таким образом, вред или, по крайней мере, дискомфорт от видимых пульсаций мы хорошо ощущаем и, по мере возможности, боремся с ними.

    Начиная с частот 60-80Гц (зависит от индивидуальных особенностей человека) мы перестаем визуально ощущать воздействие пульсаций освещенности – мы их не видим. Такая частота называется критической частотой слияния мельканий (КЧСМ). То есть наш мозг не успевает обрабатывать поступающую информацию об изменениях интенсивности светового потока. Однако, эти пульсации освещенности детектируются зрительными рецепторами, но не обрабатываются как визуальная информация и воздействуют напрямую на работу прочих отделов мозга. В конечном итоге, высокочастотные пульсации света влияют на гормональный фон человека, суточные биоритмы и связанные с ними работоспособность, утомляемость, эмоциональное самочувствие.

    При длительном воздействии пульсации освещенности могут приводить уже к хроническим заболеваниям не только органов зрения, но и сердечно-сосудистой и нервной системы. То есть, мы видим, что требования к уровню пульсаций освещения возникли не на пустом месте и задолго до появления современных источников света.

    Проблема недостатка серьезного контроля за уровнем пульсаций освещения постоянно поднимается российскими медиками [3] . Идет постоянная работа по разработке современных стандартов качества освещения.

    Нормативные требования к уровню пульсаций освещенности

    Требования к уровню пульсаций искусственной освещенности разбросаны по разным нормативным документам. Вот выдержки из некоторых:

    1. В СНиП 23-05-95 «Естественное и искусственное освещение» указывается, что коэффициент пульсации освещённости рабочей поверхности рабочего места не должен превышать 10% – 20% (в зависимости от степени напряжённости работы), при этом нормируются только те пульсации, частота которых ниже 300 Гц.
    2. В ГОСТ 17677-82 «Светильники. Общие технические условия» приведены требования к рабочей частоте пускорегулирующей аппаратуры (ПРА) светильников с люминесцентными лампами. Она должна быть не ниже 400 Гц.
    3. В СанПиН 2.2.2/2.4.1340-03 „Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» указывается, что коэффициент пульсаций освещения при работе на ПЭВМ не должен превышать 5%.

    Читайте также:  История развития электрического освещения

    Итак, можно обобщить, что пульсации освещенности, частотой до 300 Гц, на рабочих местах не должны превышать 20%, а в некоторых случаях (при работе с ПЭВМ) – 5%. В местах временного пребывания (коридоры, лестницы, переходы и т.п.) уровень пульсации не нормируется. Также не нормируются пульсации освещенности, частота которых превышает 300 Гц.

    C 1 января 2013 года введен в действие новый ГОСТ Р 54945-2012 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности». В этом документе, наконец-то, однозначно прописаны все формулировки, методы измерения и расчета пульсаций освещенности.

    Пульсации освещенности: расчёт пульсации светового потока

    По ГОСТ Р 54945-2012 уровень пульсации освещенности характеризует коэффициент пульсации (Кп). Он представляет собой отношение разности между максимальным и максимальным значениями освещенности к среднему значению освещенности за время измерения.

    Ф. 1. Формула расчета коэффициента пульсации по ГОСТ Р 54945-2012

    где Емин – зафиксированный минимум значения освещённости (см. Рис.2),
    Емакс – зафиксированный максимум значения освещённости (см. Рис.2),
    Еср – среднее значение освещённости за время измерения (см. Рис.2)

    Рис. 2. Графическое изображение параметров пульсации светового потока

    По ГОСТ Р 54945-2012 в качестве Еср необходимо брать интегральное значение освещенности. Тогда полная формула для расчета коэффициента пульсаций имеет вид:

    Ф. 2. Формула расчета коэффициента пульсации по ГОСТ Р 54945-2012

    где Т – время измерения.
    Однако, до недавнего времени, для расчетов коэффициента пульсации в качестве Еср часто использовали среднеарифметическое значение:

    Ф. 3. Формула расчета Еср

    тогда формула для расчета пульсаций освещенности принимает вид:

    Ф. 4. Полная формула расчета коэффициента пульсации освещенности

    Особенности расчета коэффициента пульсаций

    При измерении сигналов с формой, близкой к гармонической, результат расчет коэффициента пульсаций по формулам (2) и (4) практически совпадают. Однако, при расчете коэффициента пульсации импульсных сигналов, результаты расчетов по формуле (2) и (4) могут сильно отличаться. В частности видно, что при расчете по формуле (4) значение Кп никогда не может превысить 100%, в то время, как при расчете по формуле (2), при больших скважностях сигнала, может значительно превышать 100% и более.

    На Рис.3 приведен пример измерения коэффициента пульсации яркости экрана ЭЛТ-монитора при помощи фотоголовки ФГ-01 и программы «ЭкоЛайт-АП». Хорошо видна разница в несколько раз значений Кп=92,4%, рассчитанного по формуле (4), и Ки=258,5%, рассчитанного по формуле (2).

    Рис. 3. Измерение мерцания ЭЛТ-монитора

    Об этой особенности расчета необходимо помнить при измерении коэффициента пульсаций у источников освещения, управляемых импульсными преобразователями или источниками питания (например, диммерами). И в целом, следует избегать применения для управления освещением низкочастотных импульсных преобразователей (с частотой преобразования 300 Гц и ниже) и тиристорных регуляторов с фазовой регулировкой мощности (регулировка мощности за счет включения нагрузки лишь на часть периода переменного сетевого напряжения).

    Измерения коэффициента пульсации освещенности

    Сегодня в Интернете на различных тематических ресурсах активно обсуждаются различные способы определения пульсации светового потока от любых источников. Начиная от „карандашного метода“, с помощью цифровых фото- и видеокамер и заканчивая фотодиодом, подключенным к осциллографу. Не будем углубляться в описание и сравнение всех подручных методов (это тема, скорее, для разнообразных форумов и блогов), но, по нашему твердому убеждению, ни один из этих методов не дает хотя бы минимальной гарантии того, что Вы сможете таким способом хотя бы „поймать“ пульсацию, не говоря уже о том, чтобы измерить коэффициент пульсации.

    Для измерения пульсаций освещенности в РФ выпускаются специализированные приборы — пульсметры. В часности, функция измерения коэффициента пульсаций освещенности встроена в люксметры-яркомеры-пульсметры «ЭкоЛайт» (Рис.4, 5), часть приборов ТКА ПКМ (Рис.6.), «Аргус-07» (Рис.7).

    Это профессиональные приборы, разработанные с учетом требований нормативных документов РФ. Они включены в Государственный Реестр Средств Измерений РФ и могут поставляться с метрологической поверкой, Цена таких приборов составляет от 18000 рублей и выше. Серьезных зарубежных приборов для измерения пульсаций светового потока на рынке РФ не представлено. К сожалению, до недавнего времени на рынке совершенно не были представлены недорогие пульсметры. Однако, с середины 2014 года, в продажу поступает недорогой персональный люксметр-пульсметр-яркомер «Люпин» (Рис.8.), близкий по своим параметрам к профессиональным приборам, но по существенно меньшей цене.

    Читайте также:  Освещенность в люксах: таблица для разных видов помещений, перевод в люмены

    Для более глубокого анализа пульсаций – их характера, формы, частотных составляющих, максимального, минимального значения, подсчета коэффициента пульсаций двумя различными методами (см. выше), можно использовать бесплатную программу «ЭкоЛайт-АП». Она работает с профессиональными приборами серии «Эколайт» и персональным люксметром-пульсметром-яркомером «Люпин». Некоторые результаты измерений пульсаций, полученные при помощи программы «ЭкоЛайт-АП», приведены на Рис.9, 10, 11.

    Пульсации освещенности современных ламп и светильников: опыт измерения

    В нашей практике есть множество примеров удачного и неудачного применения новых систем освещения. По приведенным ниже примерам из жизни хорошо видно, что технологии современного освещения находятся еще на стадии становления. И поэтому на рынке присутствует большое количество либо не совсем „зрелых“ решений, либо зачастую откровенных подделок или брака. В то же время, мы видим, что все эти проблемы решаемы, особенно, если перед реализацией проекта освещения провести аккуратную работу по расчету и тестированию предлагаемого решения и заранее локализовать или вообще устранить потенциальные проблемы.

    Например, наличие пульсаций у светильника или лампы, как правило, сигнализирует о том, что производитель, возможно, решил сэкономить на производстве, т.к. для обеспечения низкого уровня пульсации требуются некоторые небольшие дополнительные затраты с его стороны. И будет справедливо предположить, что если производитель немного сэкономил на подавлении пульсаций, то он, скорее всего, мог сэкономить и на других компонентах, что может привести к ухудшению характеристик лампы или светильника, таких как срок службы, цветопередача, энергоэффективность, электромагнитная совместимость, защита от перегрузок и перепадов напряжения в сети и многое другое…

    Вот лишь несколько примеров из реальной жизни, связанных с измерением уровней пульсаций, причин их возникновения и борьбой с ними.

    1. Московский Инженерно-Физический институт (МИФИ).
    Повсеместная замена устаревших светильников на лампах ЛБ-40 и ЭМПРА (коэффициент пульсации около 40%) на светодиодные светильники типа «Армстронг». После замены коэффициент пульсации возрос до 56%, а уже через полгода эксплуатации отмечены штучные случаи выхода светильников из строя. Изучение схемы нового светильника показало полное отсутствие какой-либо схемы управления. Единственная светодиодная линейка из 42 последовательно включенных светодиодов запитана с выхода понижающего трансформатора через диодный мост и фильтрующий конденсатор минимальной емкости.

    2. Поставщик «умных» дорогих систем освещения известного зарубежного бренда обратился с вопросом о повышенных пульсациях светового потока поставляемых им светильников на промежуточных уровнях яркости. Измерения с помощью программы «ЭкоЛайт-АП» показали, что яркость светильника регулируется ШИМ-модулятором с рабочей частотой около 200 Гц. Производителю были высланы результаты измерений, на основе которых частота работы ШИМ-регулятора была повышена до 1 кГц. В результате, пульсации светильников снизились до уровня менее 1% на всех уровнях яркости.

    3. Потолочные светтльники типа «Армстронг» с «noname» газоразрядными лампами 4 * 18 Вт и ЭМПРА. Освещенность в контрольной точке 450 лк, коэффициент пульсации освещенности 40%. Проведена замена ламп на новые с индексом цветопередачи Ra > 90 и заменены ЭМПРА на качественные ЭПРА класса А2. При той же потребляемой мощности получили значение пульсаций освещенности менее 0,5% и увеличение освещенности в контрольной точке до 1100лк. Стоимость модернизации минимальна — около 130 рублей за лампу и около 500 рублей за ЭПРА. Итого, около 1000 рублей на один светильник.

    Коэффициент пульсаций: заключение

    Применение современных систем освещения — это большой шаг вперед в повышении условий жизни человека. Все проблемы, связанные с применением современных источников света — это проблемы роста, они решаемы и в скором времени мы не сможем себе представить жизни без светодиодных, компактных газоразрядных, индукционных или каких-нибудь еще новых типов ламп. А их применение будет не сложнее, чем сейчас «вкрутить новую лампочку». Но это в недалеком будущем, а сегодня надо быть просто немного повнимательнее и аккуратнее при выборе и применении современных источников света, обращая внимание не только на «маркетинговые» характеристики, но и измеренные, как, например, пульсации освещенности.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: