История развития электрического освещения

«История развития электрического освещения» Автор: ученица 8а класса ЦО 1428 Харьковская Ольга. Учитель: Степанюк Елена Александровна. – презентация

Презентация была опубликована 9 лет назад пользователемhelena54.narod.ru

Похожие презентации

Презентация 8 класса по предмету “История” на тему: “«История развития электрического освещения» Автор: ученица 8а класса ЦО 1428 Харьковская Ольга. Учитель: Степанюк Елена Александровна.”. Скачать бесплатно и без регистрации. — Транскрипт:

1 «История развития электрического освещения» Автор: ученица 8а класса ЦО 1428 Харьковская Ольга. Учитель: Степанюк Елена Александровна

2 Введение Первым потребителем электрической энергии явилась система электрического освещения. Электрическая лампа и по нынешний день осталась самым распространенным электротехническим устройством. В течение первой половины XIX в. господствующее положение занимало газовое освещение. Но по мере развития производства, роста городов и т.д. оно все менее удовлетворяло требованиям практики, так как было опасно в пожарном отношении, вредно для здоровья, а сила света отдельной горелки была мала. Особенно недостатки газового освещения стали сказываться на крупных предприятиях, вызывая резкое снижение производительности труда. Поэтому вполне своевременными были попытки создать электрические источники света, вскоре решительно вытеснившие все иные источники. Развитие электрического освещения шло по двум направлениям: конструирование дуговых ламп и ламп накаливания.

3 Начало истории электрического освещения Вполне естественно начать историю электрического освещения с упоминания об опытах В. В. Петрова в 1802 г., которыми было установлено, что при помощи электрической дуги «темный покой довольно ясно освещен быть может». Тогда же, в 1802 г., Дэви в Англии демонстрировал накал проводника током. В.В.Петров Дэви

4 Электрическая или «вольтова» дуга представляла собой яркое проявление электрического тока и в первой половине XIX столетия она часто демонстрировалась в лабораториях и на лекциях об электричестве. Недостатками дугового источника являются: открытое пламя (т.е. пожарная опасность), огромная сила света и необходимость регулирования дугового промежутка по мере сгорания углей.

5 В 1844 г. французский физик Жан Бернар Фуко ( гг.), заменил электроды из древесного угля электродами из ретортного угля, что увеличило продолжительность горения лампы. Регулирование оставалось еще ручным. Эти лампы использовались для непродолжительного, но интенсивного освещения, например, при подсветке стекла микроскопа, при устройстве сигнализации в маяках или театральных эффектах. Ж.Б.Фуко

6 Дальнейшая история дугового электрического освещения связана с изобретениями различных механических и электромагнитных регуляторов. Идея дифференциального регулятора Чиколева, получившего широкое применение в прожекторостроении, была использована другими конструкторами, в частности немецким фабрикантом 3. Шуккертом.

7 Примерно с 1980 года дифференциальные дуговые лампы стали единственным типом дуговых источников света, которые применялись для освещения улиц, площадей, гаваней, а также для освещения помещений производственного или общественного назначения, они стали обычными источниками света в прожекторной и светопроекционной технике.

8 Особое место среди дуговых источников света занимает «электрическая свеча» Павла Николаевича Яблочкова ( ). Изобретение не привело к массовому применению именно этого источника света, но оно заслуживает особой оценки, поскольку именно «электрическая свеча» вызвала бурный рост электротехнической промышленности. П.Н.Яблочков

9 Осенью 1875 г. Яблочков проводил опыт электролиза поваренной соли. Два угольных электрода были расположены параллельно, и однажды, когда электроды на мгновение коснулись друг друга в нижних своих частях, между ними возникла электрическая дута. Увидев длительное горение дуги между параллельными стержнями, изобретатель воскликнул, обращаясь к коллеге: «Смотри, и регулятора никакого не нужно!». Изобретение было важным, но гениально простым: чтобы избавиться от дорогих регуляторов нужно просто повернуть угли из встречного положения в параллельное. Лампа Яблочкова

Читайте также:  Искусственное освещение: разновидности по функциональному назначению

10 В гг. начались работы русского отставного офицера Александра Николаевича Лодыгина ( ). Он решил построить летательный аппарат “электролет”. Дуговая лампа не подошла, и А. Н. Лодыгин стал конструировать лампу накаливания с тонким угольным стерженьком, заключенным в стеклянном баллоне.

11 Стремясь увеличить время горения, Лодыгин предложил устанавливать несколько угольных стерженьков, расположенных так, чтобы при сгорании одного автоматически включался следующий. Постепенно он усовершенствовал лампы. Если первые лампы работали мин, то со временем срок службы увеличился до нескольких сотен часов.

12 Больше всего известности, почестей и сланы в связи с электрической лампой выпало на долю Эдисона. Он разработал во всех деталях систему электрического освещения и систему централизованного электроснабжения. В 1879 г. Эдисон заинтересовался проблемой электрического освещения. Его эмиссары разъехались по всему миру в поисках наиболее подходящего растительного волокнистого материала для изготовления угольных нитей.

13 Эдисон сразу поставил перед собой две задачи: лампа должна создавать умеренную освещенность; каждая лампа должна гореть совершенно независимо от других. Так он пришел к выводу о необходимости иметь нить высокого сопротивления, что позволит включать лампы параллельно (а не последовательно, как до этого поступали с любыми электрическими лампами). Лампа Эдисона

14 Эдисон разработал систему откачки баллонов, технологию крепления вводов и угольной нити. Для того чтобы система освещения стала коммерческой, Эдисон должен был придумать множество устройств и элементов: цоколь и патрон, поворотный выключатель, плавкие предохранители, изолированные провода, крепящиеся на роликах, счетчик электрической энергии.

15 В 1882 г он построил в Нью-Йорке на Пирльстрит первую центральную электростанцию. Эдисон превратил электрическую энергию в товар, продаваемый всем желающим, а электрическую установку в систему централизованного электроснабжения.

16 Источники информации Электротехническая библиотека Энциклопедия «Самые знаменитые изобретатели России».Автор-составитель С.Истомин Книга «Памятники науки и техники».Научные редакторы Г.Г.Григорян и И.В.Пономарёв.

Доклад на тему история развития электрического свечения​

u0418u0441u0442u043eu0440u0438u044f u0440u0430u0437u0432u0438u0442u0438u044f u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0433u043e u043eu0441u0432u0435u0449u0435u043du0438u044f u0431u0435u0440u0435u0442 u0441u0432u043eu0435 u043du0430u0447u0430u043bu043e u0441 1870 u0433u043eu0434u0430, u043au043eu0433u0434u0430 u0431u044bu043bu0430 u0438u0437u043eu0431u0440u0435u0442u0435u043du0430 u043bu0430u043cu043fu0430 u043du0430u043au0430u043bu0438u0432u0430u043du0438u044f, u0434u0430u0432u0430u0432u0448u0430u044f u0441u0432u0435u0442 u0441 u043fu043eu043cu043eu0449u044cu044e u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0433u043e u0442u043eu043au0430. u0418u0441u0442u043eu0440u0438u044f u0440u0430u0437u0432u0438u0442u0438u044f u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0433u043e u0442u043eu043au0430 u043du0430u0447u0430u043bu0430u0441u044c u0433u043eu0440u0430u0437u0434u043e u0440u0430u043du044cu0448u0435, u043au043eu0433u0434u0430 u043eu043fu044bu0442u044b u0438u0437u0432u0435u0441u0442u043du043eu0433u043e u0443u0447u0435u043du043eu0433u043e u0412u043eu043bu044cu0442u0430 u0437u0430u0432u0435u0440u0448u0438u043bu0438u0441u044c u0441u043eu0437u0434u0430u043du0438u0435u043c u0449u0435u043bu043eu0447u043du043eu0439 u0431u0430u0442u0430u0440u0435u0438. u0418 u0441u0430u043cu044bu0435 u043fu0435u0440u0432u044bu0435 u043fu0440u0438u0431u043eu0440u044b u0434u043bu044f u043eu0441u0432u0435u0449u0435u043du0438u044f, u043au043eu0442u043eu0440u044bu0435 u0440u0430u0431u043eu0442u0430u043bu0438 u043du0430 u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu043c u0442u043eu043au0435, u0431u044bu043bu0438 u0441u043eu0437u0434u0430u043du044b u0432 u043du0430u0447u0430u043bu0435 XIX u0432u0435u043au0430. u0418u0445 u043fu044bu0442u0430u043bu0438u0441u044c u0438u0441u043fu043eu043bu044cu0437u043eu0432u0430u0442u044c u0434u043bu044f u043eu0441u0432u0435u0449u0435u043du0438u044f u0443u043bu0438u0446, u043eu0434u043du0430u043au043e u043eu043du0438 u0431u044bu043bu0438 u0441u043bu0438u0448u043au043eu043c u0434u043eu0440u043eu0433u0438u043cu0438 u0438 u043du0435u0443u0434u043eu0431u043du044bu043cu0438.n

u041fu0435u0440u0435u0432u043eu0440u043eu0442 u0441u043eu0432u0435u0440u0448u0438u043b u0438u043du0436u0435u043du0435u0440 u0438u0437 u0420u043eu0441u0441u0438u0438 u041fu0430u0432u0435u043b u042fu0431u043bu043eu0447u043au043eu0432, u043au043eu0442u043eu0440u044bu0439 12 u0434u0435u043au0430u0431u0440u044f 1876 u0433u043eu0434u0430 u043eu0442u043au0440u044bu043b u00abu044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au0443u044e u0441u0432u0435u0447u0443u00bb, u043au043eu0442u043eu0440u0430u044f u0441 u043fu043eu043cu043eu0449u044cu044e u044du043bu0435u043au0442u0440u0438u0447u0435u0441u0442u0432u0430 u0441u0442u0430u043bu0430 u0443u0434u043eu0431u043du044bu043c u0438u0441u0442u043eu0447u043du0438u043au043eu043c u0434u043bu044f u043eu0441u0432u0435u0449u0435u043du0438u044f. u0412u0430u0436u043du0443u044e u0434u043eu0440u0430u0431u043eu0442u043au0443 u0432 u0441u043eu0437u0434u0430u043du043du043eu0439 u042fu0431u043bu043eu0447u043au043eu0432u044bu043c u043bu0430u043cu043fu0435 u043du0430u043au0430u043bu0438u0432u0430u043du0438u044f u0438u0437u043eu0431u0440u0435u043b u0437u043du0430u043cu0435u043du0438u0442u044bu0439 u0430u043cu0435u0440u0438u043au0430u043du0435u0446 u0422u043eu043cu0430u0441 u042du0434u0438u0441u043eu043d. u041eu043d u043fu043eu043cu0435u0441u0442u0438u043b u0443u0441u0442u0440u043eu0439u0441u0442u0432u043e u0432 u0432u0430u043au0443u0443u043cu043du0443u044e u043eu0431u043eu043bu043eu0447u043au0443, u043au043eu0442u043eu0440u0430u044f u0437u0430u0449u0438u0442u0438u043bu0430 u043au043eu043du0442u0430u043au0442u044b u0441 u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0439 u0434u0443u0433u043eu0439 u043eu0442 u043eu043au0438u0441u043bu0435u043du0438u044f, u043fu043eu044du0442u043eu043cu0443 u0435u0433u043e u043bu0430u043cu043fu0430 u043cu043eu0433u043bu0430 u0434u0430u0432u0430u0442u044c u0441u0432u0435u0442 u0434u043eu0441u0442u0430u0442u043eu0447u043du043e u0434u043bu0438u0442u0435u043bu044cu043du043eu0435 u0432u0440u0435u043cu044f. u0421 u0435u0433u043e u043fu043eu043cu043eu0449u044cu044e u0438u0441u0442u043eu0440u0438u044f u0440u0430u0437u0432u0438u0442u0438u044f u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0433u043e u043eu0441u0432u0435u0449u0435u043du0438u044f u043fu043eu043bu0443u0447u0438u043bu0430 u043du043eu0432u044bu0439 u043cu043eu0449u043du044bu0439 u0438u043cu043fu0443u043bu044cu0441. 21 u043eu043au0442u044fu0431u0440u044f 1879 u0433u043eu0434u0430 u043eu043d u0432u043au043bu044eu0447u0438u043b u043fu0435u0440u0432u0443u044e u043bu0430u043cu043fu043eu0447u043au0443, u043au043eu0442u043eu0440u0430u044f u0441u043cu043eu0433u043bu0430 u0433u043eu0440u0435u0442u044c u0434u0432u0430 u0434u043du044f.n

u0421 u043bu0435u0433u043au043eu0439 u0440u0443u043au0438 u0422u043eu043cu0430u0441u0430 u042du0434u0438u0441u043eu043du0430 u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au0430u044f u043bu0430u043cu043fu043eu0447u043au0430 u0441u0442u0430u043bu0430 u043au043eu043cu043cu0435u0440u0447u0435u0441u043au0438u043c u043fu0440u043eu0434u0443u043au0442u043eu043c u0438 u043fu043eu043bu0443u0447u0438u043bu0430 u0448u0438u0440u043eu043au043eu0435 u0440u0430u0441u043fu0440u043eu0441u0442u0440u0430u043du0435u043du0438u0435 u0443u0436u0435 u0432 u043du0430u0447u0430u043bu0435 XX u0432u0435u043au0430. u0412 u0434u0430u043bu044cu043du0435u0439u0448u0435u043c u0438u0441u0442u043eu0440u0438u044f u0440u0430u0437u0432u0438u0442u0438u044f u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0433u043e u043eu0441u0432u0435u0449u0435u043du0438u044f u0443u0436u0435 u0441u0442u0430u043bu0430 u0434u0432u0438u0433u0430u0442u044cu0441u044f u0432u043fu0435u0440u0435u0434 u0431u043bu0430u0433u043eu0434u0430u0440u044f u0431u0443u0440u043du043eu0439 u0434u0435u044fu0442u0435u043bu044cu043du043eu0441u0442u0438 u0443u0447u0435u043du044bu0445 u0438 u0438u0437u043eu0431u0440u0435u0442u0430u0442u0435u043bu0435u0439, u0442u0430u043a u043au0430u043a u043au0430u0436u0434u043eu0435 u043du043eu0432u043eu0435 u0438u0437u043eu0431u0440u0435u0442u0435u043du0438u0435 u0441u043eu0431u043eu0439 u0441u0438u043cu0432u043eu043bu0438u0437u0438u0440u043eu0432u0430u043bu043e u043du043eu0432u044bu0439 u0432u0438u0442u043eu043a u0440u0430u0437u0432u0438u0442u0438u044f u0438u043du0434u0443u0441u0442u0440u0438u0438 u043eu0441u0432u0435u0449u0435u043du0438u044f.n

u0412 1901 u0433u043eu0434u0443 u041au0443u043fu0435u0440-u0425u044cu044eu0438u0442 u043fu0440u043eu0434u0435u043cu043eu043du0441u0442u0440u0438u0440u043eu0432u0430u043b u0440u0442u0443u0442u043du0443u044e u043bu0430u043cu043fu0443 u043du0438u0437u043au043eu0433u043e u0434u0430u0432u043bu0435u043du0438u044f.n

Читайте также:  Закон отражения света: кто открыл, формула и математическая запись

u0427u0442u043eu0431u044b u0447u0435u043bu043eu0432u0435u043a u0445u043eu0440u043eu0448u043e u043fu043eu043bu0443u0447u0430u043bu0441u044f u043du0430 u0444u043eu0442u043eu0433u0440u0430u0444u0438u044fu0445, u0435u043cu0443 u0434u043eu0441u0442u0430u0442u043eu0447u043du043e u0431u044bu0442u044c u0441u0447u0430u0441u0442u043bu0438u0432u044bu043cu00a9n

u0427u0442u043eu0431u044b u0447u0435u043bu043eu0432u0435u043a u0445u043eu0440u043eu0448u043e u043fu043eu043bu0443u0447u0430u043bu0441u044f u043du0430 u0444u043eu0442u043eu0433u0440u0430u0444u0438u044fu0445, u0435u043cu0443 u0434u043eu0441u0442u0430u0442u043eu0447u043du043e u0431u044bu0442u044c u0441u0447u0430u0441u0442u043bu0438u0432u044bu043cu00a9

3.2. Законы отражения и преломления света

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Читайте также:  Поляризованный свет: описание явления, примеры, формулы и разновидности

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

Таким образом, закон преломления света записывается так:

На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

Рис. 3.7. Изучение закона преломления

Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

Рис. 3.8. Искривление луча света в неоднородной среде

Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

Дополнительная информация

http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

Принцип Ферма.

Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

Для прохождения участка пути свету требуется время

Читайте также:  Сила света: определение, единицы измерения (формула)

где v=с/п – скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

Введем величину с размерностью длины, которая называется оптической длиной пути:

Пропорциональность t и L позволяет сформулировать принцип Ферма следующим образом:

Свет распространяется по такому пути, оптическая длина которого минимальна.

Рассмотрим путь света из точки S в точку С после отражения от плоскости АВ (рис. 3.9).

Рис. 3.9. Применение принципа Ферма к отражению света

Непосредственное попадание света из S в С невозможно из-за экрана. Нам надо найти точку О, отразившись в которой луч попадет в точку С. Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Рассмотрим зеркальное изображение S’ точки S. Геометрические длины путей SOC и S’OC равны. Поэтому минимальность длины SOC эквивалентна минимальности длины S’OC. А минимальная геометрическая длина пути из S’ в С будет соответствовать прямой, соединяющей точки S’ и С. Пересечение этой прямой с плоскостью раздела сред дает положение точки О. Отсюда следует равенство углов:

то есть закон отражения света.

Рассмотрим теперь явление преломления света (рис. 3.10).

Рис. 3.10. Применение принципа Ферма к преломлению света

Определим положение точки О, в которой должен преломиться луч, распространяясь от S к С, чтобы оптическая длина пути L была минимальна. Выражение для L имеет вид

Найдем величину х, соответствующую экстремуму оптической длины пути:

Закон отражения света

Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами в котором волновой фронт возвращается в среду, из которой он пришёл.

Содержание

История

Впервые закон отражения упоминается в «Катоптрике» Евклида, датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

Читайте также:  Единица измерения освещенности: формула и от чего она зависит, перечень единиц

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд ” 1,0; nст = 1,5) он составляет ” 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного – падает (их сумма равна интенсивности падающего луча). При каком-то значении i = ik угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > ik преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

Что представляет собой закон отражения света: полная формулировка

Трансформацию освещения мы наблюдаем повсеместно: в витринах магазинов, солнечные блики от воды и конечно в зеркале. Но мы совсем не задумываемся о механизмах и принципах этого явления. Но эти основы активно применяются в различных сферах нашей жизни. Давайте чуть глубже узнаем: что собой представляет свет, как он преломляется и как это применяется в жизни.

Основы знаний о свете

Основы физических знаний являются наиболее доступными для понимания, так как их принципы мы воочию наблюдаем каждый день вокруг себя. То же касается и закона отражения света. Этот закон описывает момент, когда световые волны, попадая на поверхность, изменяют свое направление и возвращаются обратно только под другим углом.

Это касается не только зеркальных поверхностей. Любой объект мы видим, потому что он отражает естественное солнечное или искусственное освещение.

При изменении своего направления лучи проходят в одной среде и сталкиваются с другой, часть их возвращается обратно в первичную среду. Если часть спектра проникает в другое вещество мы наблюдаем явление – преломления.

Чтобы не запутаться в теории, давайте разберемся с терминологией:

  1. Падающий луч – это поток световых волн, попадающий на границу разделения двух оптических сред.
  2. Излучение, которое вернулось в начальное вещество – называется отраженным.
  3. Если мы построим воображаемый перпендикуляр к отражающей поверхности (нормаль) в точке падения освещения, то угол падения будет высчитываться, как угол между перпендикуляром и падающим световым потоком.
  4. Угол возвращения света, соответственно, это угол между нормалью и отраженным освещением.
Читайте также:  Интенсивность света: формула через длину волны и единицы измерения

Рекомендуем посмотреть видео на тему “Закон отражения света”.

На основе этих определений можно вывести коэффициент отражения. Этот коэффициент показывает, какая часть светового потока вернется обратно в первоначальную среду. На показатель возвращения в первую очередь влияет характер лучей и угол падения на поверхность.

Небольшой исторический экскурс

Фундамент теоретических знаний о законах распространения света был заложен древнегреческим математиком Евклидом и Аристотелем. Они первые попытались описать процессы трансформации солнечной активности с точки зрения физики еще в 3 веке до н.э.

Далее теоретические материалы изучались и подтверждались опытным путем Ньютоном, Гюйгенсом. Именно он первый объяснил геометрические закономерности оптических явлений с точки зрения волновой природы излучения. Его доказательства основываются на геометрических аксиомах о равнобедренных треугольниках.

Эти принципы мы разберем немного подробней.

Закон отражения света

Закон отражения света описывает закономерности при явлении, когда луч, проходящий в одном веществе, на поверхности соприкосновения с другим веществом возвращается обратно.

Если среда прозрачная, то спектр проходит через нее и возвращения мы не увидим.

Наше зрение воспринимает свет от его излучателя, либо от предметов, отражающих световые волны. При этом если предмет отражает часть энергии обратно, то он сам становится объектом излучения, для наших глаз.

Чтобы описать закономерности геометрической оптики существуют, два закона:

  • Первый закон: излучение падающее, излучение, отраженное и нормальное (условный перпендикуляр к поверхности) располагаются в одной плоскости относительно друг друга. Это значит, что световой пучок является плоской.
  • Второй закон: угол отражения падающего луча равен углу падения относительно нормали.

То есть сначала световой пучок попадает на зеркальную поверхность, и в точке падения становится источником вторичного излучения. Это произойдет спустя миллисекунды. Исходя из принципа Гюйгенса, если рассматривать падение и возвращение потока с точки зрения равнобедренных треугольников (∠АВС = ∠DAC).

Второй закон можно представить в виде равенства:

То есть вся энергия будет направлена на отражение света, при этом преломленного освещения не будет совсем. Этот феномен называется – явление полного отражения света.

Зеркальное и диффузионное отражение

Существует два типа возвращения лучей в вещество откуда они упали: зеркальное и диффузное. Это зависит от структуры поверхности.

  • Диффузное отражение происходит от негладких оснований (дерево, бумага, асфальт). Такие материалы имеют много микро-изгибов, впадин, ломанных углублений, которые имеют разные углы. Поэтому параллельные волны энергии, попадая на такой объект, отражаются под разными углами.
    То есть для каждой волны второй закон выполняется, а в общем рассеивание потока происходит в разные стороны.
  • Зеркальное отражение мы наблюдаем от глянцевых ровных оснований (зеркало, ртуть, затемненное стекло, шлифованный металл, камень). Это явление, когда каждая волна возвращается обратно под одинаковым углом для всех лучей.
    Излучение падает на объект параллельными линиями и отражается, тоже параллельными потоками.

Рекомендуем посмотреть видео на тему “Зеркальное и диффузное отражение”.

Явление обратного отражения

Если поверхность абсолютно плоская и зеркальная, то можно наблюдать процесс обратного отражения. Это явление, когда волны полностью возвращаются после попадания на зеркальное основание к источнику их излучения по параллельной прямой.

То есть, если взять зеркало и направить на него освещение прямо перпендикулярно, оно вернется точно обратно.

Читайте также:  Кривая силы света: типы, методы правильного подбора

Наглядно этот феномен можно наблюдать, если разместить два зеркала перпендикулярно друг к другу. Под каким бы наклоном не направить освещение, спектр будет возвращаться обратно параллельно первоначальному излучению.

Использование закона на практике

На практике мы можем наблюдать эти физические закономерности повсюду. Чтобы было наглядней, возьмите лазерный фонарик с тонким пучком света. Выключите свет и направьте его на зеркало под разными углами.

Если вы будете менять направление освещения, будет меняться и плоскость его возвращения. Такой эффект применяется в оптическом оснащении современной экспериментальной техники. Вогнутые зеркальные плоскости применяются для фокусировки лучей в одной точке. Выпуклые же наоборот рассеивают попадающий на них спектр. При этом увеличивается угол обзора.

Принцип полного внутреннего возврата спектра энергии, применяется в изготовлении оптико-волоконного производства кабелей для скоростной передачи цифровых данных.

В заключение

Явления, которые мы наблюдаем ежедневно, имеют свои принципы и описания. Мы не всегда задумываемся о том, почему видим свое отражение в водоеме, или искаженный портрет в комнате смеха. Однако, эти закономерности активно применяются в производстве оптики. Где еще мы можем наблюдать действие закона отражения света в повседневной жизни, делитесь в комментариях и социальных сетях.

Что необходимо знать о законах отражения света

Свет является важной составляющей нашей жизни. Без него невозможна жизнь на нашей планете. При этом многие явления, которые связаны со светом, сегодня активно используются в разнообразных сферах человеческой деятельности, начиная от производства электротехнических приборов до космических аппаратов. Одним из основополагающих явлений в физике является отражение света.

Закон отражения света изучается еще в школе. Что следует знать о нем, а также много еще полезной информации сможет рассказать вам наша статья.

Основы знаний о свете

Как правило, физические аксиомы являются одними из наиболее понятных, поскольку они имеют наглядное проявление, которые можно легко пронаблюдать в домашних условиях. Закон отражения света подразумевает ситуацию, когда у световых лучей происходит смена направления при столкновении с различными поверхностями.

Обратите внимание! Граница преломления значительно увеличивает такой параметр, как длина волны.

В ходе преломления лучей часть их энергии возвратятся обратно в первичную среду. При проникновении части лучей в иную среду наблюдается их преломление.
Чтобы разбираться во всех этих физических явлениях, необходимо знать соответствующую терминологию:

  • поток световой энергии в физике определяется как падающий при попадании на границу раздела двух веществ;
  • часть энергии света, которая в данной ситуации возвращается в первичную среду, называется отраженной;

Обратите внимание! Существует несколько формулировок правила отражения. Как вы его не сформулируйте, но он все равно будет описывать взаимное расположение отраженных и падающих лучей.

  • угол падения. Здесь подразумевается угол, который формируется между перпендикулярной линией границы сред и падающим на нее светом. Он определяется в точке падения луча;

  • угол отражения. Он формируется между отраженным лучом и перпендикулярной линией, которая была восстановлена в точке его падения.

Кроме этого необходимо знать, что свет может распространяться в однородной среде исключительно прямолинейно.

Обратите внимание! Различные среды могут по-разному отражать и поглощать излучение света.

Отсюда выходит коэффициент отражения. Это величина, которая характеризует отражательную способность предметов и веществ. Он означает, сколько излучения принесенного световым потоком на поверхность среды составит та энергия, которая будет отражена от нее. Данный коэффициент зависит от целого ряда факторов, среди которых наибольшее значение имеют состав излучения и угол падения.
Полное отражение светового потока наблюдается тогда, когда луч падает на вещества и предметы, обладающие отражающей поверхностью. К примеру, отражение луча можно наблюдать при попадании его на стекло, жидкую ртуть или серебро.

Читайте также:  Температура света: шкала измерения в Кельвинах, теплый и холодный свет

Небольшой исторический экскурс

Законы преломления и отражения света были сформированы и систематизированы еще в ІІІ в. до н. э. Их разработал Евклид.

Все законы (преломления и отражения), которые касаются данного физического явления, были установлены экспериментальным путем и легко могут подтвердиться геометрическим принципом Гюйгенса. По этому принципу любая точка среды, до которой может дойти возмущение, выступает в роли источника вторичных волн.
Рассмотрим существующие на сегодняшний день законы более детально.

Законы – основа всего

Закон отражения светового потока определяется как физическое явление, в ходе которого свет, направляющийся из одной среды в другую, на их разделе будет частично возвращен обратно.

Отражение света на границе раздела

Зрительный анализатор человека наблюдает свет в момент, когда луч, идущий от своего источника, попадает в глазное яблоко. В ситуации, когда тело не выступает в роли источника, зрительный анализатор может воспринимать лучи от иного источника, которые отражаются от тела. При этом световое излучение, падающее на поверхность объекта, может изменить направление своего дальнейшего распространения. В результате этого тело, которое отражает свет, будет выступать в роли его источника. При отражении часть потока будет возвращаться в первую среду, из которой он первоначально направлялся. Здесь тело, которое отразит его, станет источником уже отраженного потока.
Существует несколько законов для данного физического явления:

  • первый закон гласит: отражающий и падающий луч, вместе с перпендикулярной линией, возникающей на границе раздела сред, а также в восстановленной точке падения светового потока, должны располагаться в одной плоскости;

Обратите внимание! Здесь подразумевается, что на отражательную поверхность предмета или вещества падает плоская волна. Ее волновые поверхности являются полосками.

Первый и второй закон

  • второй закон. Его формулировка имеет следующий вид: угол отражения светового потока будет равен углу падения. Это связано с тем, что они обладают взаимно перпендикулярными сторонами. Беря во внимание принципы равенства треугольников, становится понятным, откуда берется это равенство. Используя данные принципы можно легко доказать то, что эти углы находятся в одной плоскости с проведенной перпендикулярной линией, которая была восстановлена на границе разделения двух веществ в точке падения светового луча.

Эти два закона в оптической физике являются основными. При этом они справедливы и для луча, имеющего обратный ход. В результате обратимости энергии луча, поток, распространяющийся по пути ранее отраженного, будет отражаться аналогично пути падающего.

Закон отражения на практике

Проверить исполнение данного закона можно на практике. Для этого необходимо направить тонкий луч на любую отражающую поверхность. В этих целях отлично подойдет лазерная указка и обычное зеркало.

Действие закона на практике

Направляем лазерную указку на зеркало. В результате этого лазерный луч отразится от зеркала и распространится дальше в заданном направлении. При этом углы падающего и отраженного луча будут равны даже при обычном взгляде на них.

Обратите внимание! Свет от таких поверхностей будет отражаться под тупым углом и дальше распространяться по низкой траектории, которая расположена достаточно близко к поверхности. А вот луч, который будет падать практически отвесно, отразится под острым углом. При этом его дальнейший путь будет практически аналогичным падающему.

Как видим, ключевым моментом данного правила является тот факт, что углы необходимо отчитывать от перпендикуляра к поверхности в месте падения светового потока.

Обратите внимание! Этому закону подчиняется не только свет, но и любые виды электромагнитных волн (СВЧ, радио-, рентгеновские волны и т.п ).

Особенности диффузного отражения

Многие предметы могут только отражать падающее на их поверхность световое излучение. Отлично освещенные объекты хорошо видны с разных сторон, так как их поверхность отражает и рассеивает свет в разных направлениях.

Читайте также:  Коэффициент пульсации освещенности: определение норм и способы снижения

Такое явление называется рассеянным (диффузным) отражением. Это явление образуется при попадании излучения на различные шероховатые поверхности. Благодаря ему мы имеем возможность различать объекты, которые не имеют способности испускать свет. Если рассеивание светового излучения будет равно нулю, то мы не сможем увидеть эти предметы.

Обратите внимание! Диффузное отражение не вызывает у человека дискомфорта.

Отсутствие дискомфорта объясняется тем, что не весь свет, согласно вышеописанному правилу, возвращается в первичную среду. Причем этот параметр у разных поверхностей будет различным:

  • у снега – отражается примерно 85% излучения;
  • у белой бумаги — 75%;
  • у черного цвета и велюра — 0,5%.

Если же отражение идет от шероховатых поверхностей, то свет будет направляться по отношению друг к другу хаотично.

Особенности зеркального отображения

Зеркальное отражение светового излучения отличается от ранее описанных ситуаций. Это связано с тем, что в результате падения потока на гладкую поверхность при определенном угле они будут отражаться в одном направлении.

Это явление можно легко воспроизвести, используя обычное зеркало. При направлении зеркала на солнечные лучи, оно будет выступать в роли отличной отражающей поверхности.

Обратите внимание! К зеркальным поверхностям можно отнести целый ряд тел. К примеру, в эту группу всходят все гладкие оптические объекты. Но такой параметр, как размеры неровностей и неоднородностей у этих объектов будут составлять менее 1 мкм. Величина длины волны света составляет примерно 1 мкм.

Все такие зеркальные отражающие поверхности подчиняются ранее описанным законам.

Использование закона в технике

На сегодняшний день в технике достаточно часто применяются зеркала или зеркальные объекты, имеющие изогнутую отражающую поверхность. Это так называемые сферические зеркала.
Подобные объекты представляют собой тела, которые имеют форму сферического сегмента. Для таких поверхностей характерно нарушение параллельности лучей.
На данный момент существуют два типа сферических зеркал:

  • вогнутые. Они способны отражать световое излучение от внутренней поверхности своего сегмента сферы. При отражении лучи собираются здесь в одной точке. Поэтому их часто еще называют «собирающими»;

  • выпуклые. Для таких зеркал характерно отражение излучения от наружной поверхности. В ходе этого происходит рассеивание в стороны. По этой причине такие объекты получили название «рассеивающие».

При этом существует несколько вариантов поведения лучей:

  • паление почти параллельно поверхности. В данной ситуации он лишь немного касается поверхности, а отражается под очень тупым углом. Далее он идет по достаточно низкой траектории;
  • при ответном падении, лучи отбиваются под острым углом. При этом, как мы говорили выше, отраженный луч будет следовать по пути очень близкому падающему.

Как видим, закон исполняется во всех случаях.

Заключение

Законы отражения светового излучения очень важны для нас, поскольку они являются основополагающими физическими явлениями. Они нашли обширное применение в различных сферах человеческой деятельности. Изучение основ оптики происходит еще в средней школе, что лишний раз доказывает важность таких базовых знаний.

Читайте также:  Поляризованный свет: описание явления, примеры, формулы и разновидности

Закон отражения света

Средняя оценка: 4.8

Всего получено оценок: 334.

Средняя оценка: 4.8

Всего получено оценок: 334.

С явлением отражения света мы сталкиваемся каждый день. В блестящих металлических поверхностях (зеркалах), воде и стеклах витрин отражаются люди, дома и предметы. Разберемся под какими углами происходит отражение световых волн, каким правилам подчиняется это явление.

Примеры отражения света

Самым массовым оптическим предметом, который используют люди, является обычное, плоское зеркало. Им пользуются в домашних условиях, в автомобильной оптике (зеркала, фары), в парикмахерских и на других производствах. Зеркала с криволинейными поверхностями применяются в телескопах, лазерах и других оптических прибора.

Рис. 1. Примеры отражения света в зеркалах, воде, витринах:.

Различают два вида отражений: зеркальное и диффузное. Если поверхность, на которую падает свет, гладкая — не имеет дефектов и шероховатостей, то отражение будет зеркальным. В противном случае отражение будет называться диффузным или рассеянным. Отражение света происходит от всех предметов с любым качеством поверхности. Благодаря этому мы видим все освещенные тела.

Первые упоминания об изготовлении зеркал относятся к 1240 году, когда в Европе появились первые стеклодувы. В 1279 году итальянец Джон Пекам научился покрывать стеклянные предметы тонким слоем расплавленного металла, который после остывания образовывал зеркальную поверхность.

Далее мы будем говорить только о закономерностях зеркального отражения.

Принцип Гюйгенса

Для объяснения механизма распространения световых волн, нидерландский ученый Христиан Гюйгенс в 1678 г. сформулировал принцип (постулат, т.е. утверждение принимаемое за истинное без доказательств), названный его именем. Принцип состоит из двух основных положений:

  • Каждая точка среды, до которой дошла световая волна, сама становится источником вторичных волн;
  • Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Фронт волны – это огибающая фронта вторичных волн.

На представленном рисунке изображен фронт световой волны, распространяющийся со скоростью v в два момента времени — t и t+ Δt. Точки волны в момент времени t являются источниками вторичной волны в момент времени $t+ Δt$.

Законы отражения

Из принципа Гюйгенса может быть получены закон отражения света, который подтверждается результатами многочисленных наблюдений. Условно закон состоит из двух взаимно дополняющих утверждений :

    1 закон отражения света:

Основная формула закона отражения света выглядит так:

Закон отражения света устанавливает только соотношения между углом падения и углом отражения. Часть света может преодолеть границу раздела сред (преломиться) и пройти внутрь второй среды. Угол преломления и количество прошедшего света определяется с помощью других законов и формул.

Что мы узнали?

Итак, мы узнали, что благодаря отражению света от поверхностей тел, мы, собственно, и видим различные предметы. При зеркальном отражении угол падения света равен углу отражения. Закон отражения выполняется не только для полностью отражающих поверхностей, но и для поверхностей, которые частично отражают, а частично пропускают (преломляют) свет. Например, когда свет падает из воздуха на поверхность воды.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: