Дисперсия света: чем объясняется явление (примеры)

Дисперсия света

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

  • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,
  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

  • Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

…,

  • — длина волны в вакууме;
  • a, b, c, … — постоянные, значения которых для каждого вещества должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши.

Дисперсия света в природе и искусстве

  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме – довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

См. также

Дисперсия света на Викискладе ?
  • Закон дисперсии
  • Интерференция
  • Дифракция света
  • Атмосферная дисперсия

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. — Изд. 4-е, сокр. — М .: Искусство, 1977.

Ссылки

  • Статья «Дисперсия света» в БСЭ, 3-е изд.
  • К. И. Тарасов. Спектральные приборы.

  • Переработать оформление в соответствии с правилами написания статей.
  • Проставив сноски, внести более точные указания на источники.

Wikimedia Foundation . 2010 .

  • Главный фокус
  • Дисперсия

Смотреть что такое “Дисперсия света” в других словарях:

ДИСПЕРСИЯ СВЕТА — зависимость преломления показателя n в ва от частоты n (длины волны l) света или зависимость фазовой скорости световых волн от их частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении его сквозь призму (см. СПЕКТРЫ… … Физическая энциклопедия

дисперсия света — Явления, обусловленные зависимостью скорости распространения света от частоты световых колебаний. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

дисперсия света — šviesos skaida statusas T sritis radioelektronika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerteilung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Radioelektronikos terminų žodynas

дисперсия света — šviesos dispersija statusas T sritis fizika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerlegung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Fizikos terminų žodynas

Дисперсия света — зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

Читайте также:  Единица измерения освещенности: формула и от чего она зависит, перечень единиц

ДИСПЕРСИЯ СВЕТА — зависимость показателя преломления п в ва от частоты света v. В обл. частот света, для к рых в во прозрачно, п возрастает с увеличением v нормальная Д. с. В обл. частот, соответствующих полосам интенсивного поглощения света в вом, п убывает с… … Большой энциклопедический политехнический словарь

Дисперсия света — зависимость абсолютного показателя преломления вещества от длины волны света … Астрономический словарь

Аномальная дисперсия света — Для улучшения этой статьи желательно?: Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставить шаблон карточку, который существ … Википедия

ДИСПЕРСИЯ ВОЛН — зависимость фазовой скорости гармонических волн в среде от частоты их колебаний. дисперсия волн наблюдается для волн любой природы. Наличие дисперсии волн приводит к искажению формы сигнала (напр., звукового импульса) при распространении в среде … Большой Энциклопедический словарь

Дисперсия волн — Дисперсия волн, зависимость фазовой скорости гармонических волн от их частоты. Д. определяется физическими свойствами той среды, в которой распространяются волны. Например, в вакууме электромагнитные волны распространяются без дисперсии, в… … Большая советская энциклопедия

Дисперсия света

Урок 35. Физика 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Дисперсия света”

Проведём небольшой эксперимент. Возьмём три одинаковые трёхгранные призмы и пропустим через них пучки монохроматического света различных цветов, например, красного, зелёного и фиолетового. Как видим, лучи фиолетового цвета испытают большее преломление по сравнению с зелёными.

А лучи красного цвета преломляются меньше всего. Это говорит нам о том, что угол преломления красных лучей больше, чем для лучей зелёного и фиолетового цветов. Тогда, из закона преломления света следует, что красный свет в среде распространяется быстрее. Но поскольку цвет, воспринимаемый человеческим глазом, определяется только частотой световой волны, то цвет при переходе из вакуума в вещество или из одного вещества в другое не изменяется.

Зависимость скорости распространения световых волн в среде (или зависимость показателя преломления среды) от частоты (или длины волны) света называют дисперсией света.

Впервые подробно исследовал дисперсию света сэр Исаак Ньютон. До Ньютона считалось, что цвет тела — это свойство самого тела. Например, Аристотель объяснял наличие различных цветов смешением белого света с определённым количеством темноты: немного темноты, добавленной к свету, даёт красный свет; большее количество темноты — и вот мы уже видим фиолетовый свет. И эта теория господствовала в плоть до середины XVII века.

В 1666 году Исаак Ньютон, занимаясь усовершенствованием телескопов, обратил внимание на интересный факт: изображение, получаемое с помощью объектива телескопа, по краям было окрашено. Предполагая, что это может быть как-то связано с явлением преломления света, он поставил небольшой эксперимент, который детально описал в трактате «Оптика»: «Я поместил в очень темной комнате у круглого отверстия около трети дюйма шириной в ставне окна стеклянную призму, благодаря чему пучок солнечного света, входившего в это отверстие, мог преломляться вверх к противоположной стене комнаты и образовывал там цветное изображение Солнца состоящее из ряда цветных полос плавно переходящих друг в друга».

Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный. Саму же радужную полоску Ньютон назвал спектром.

Казалось бы, простейший опыт Ньютона показал, что белый свет является сложным: пройдя через призму, он разлагается на пучки различных цветов.

Однако не все приняли результаты опыта — слишком уж необычным казалось это предположение. Основные вопросы сводились к следующему: почему белый свет, входящий в призму, выходил из неё в виде цветной полосы, содержащей именно семь цветов; почему круглый в сечении пучок после преломления в призме оказался существенно растянутым в длину; и, может это вещество, из которого изготовлена призма, окрашивает белый свет?

Для решения всех этих вопросов Ньютон провёл ещё несколько простых, но в то же время гениальных экспериментов. В начале он на пути пучка, прошедшего через призму, поместил собирающую линзу. Пройдя через неё пучок разноцветных лучей в точке схождения вновь становился белым. Такой же результат давала и вторая призма, повёрнутая на 180 о относительно первой. Таким образом было доказано, что свет действительно имеет сложную структуру.

Следующие опыты Ньютона были посвящены изучению влияния вещества призмы на характер окрашивания светового пучка. Закрыв отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрыв синим стеклом — синее пятно и так далее. Это означало, что не призма окрашивает белый свет, так как она не может влиять на цвет светового пучка.

Отдельные цветные лучи, которые после прохождения призмы не разлагались на составляющие, были названы простыми или монохроматическими.

Опытным путём Ньютон нашёл ответ и на ещё один важный вопрос: почему пучки разных цветов по-разному отклоняются призмой? В своём фундаментальном трактате «Оптика» Ньютон так сформулировал полученный им вывод: «Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости. В наибольшей степени преломляются фиолетовые пучки, в наименьшей красные».

Однако и эти опыты не смогли убедить некоторых сторонников Аристотеля. Например, выдающийся немецкий поэт и видный естествоиспытатель Иоганн Гёте писал: «Утверждение Ньютона — это чудовищное предположение. Не может быть, что самый прозрачный, самый чистый цвет — белый — оказался смесью цветных лучей». Поэт считал, что исследованный Ньютоном свет — это свет, «замученный всякого рода орудиями пытки — щелями, призмами и линзами».

Читайте также:  Коэффициент пульсации освещенности: определение норм и способы снижения

Друзья, избегайте тёмной комнаты,

Где вам искажают свет

И самым жалким образом

Склоняются перед искажёнными образами.

Ранее мы с вами показали, что показатель преломления среды зависит от скорости света в веществе. Следовательно, пучок фиолетового цвета преломляется в большей степени потому, что фиолетовый цвет имеет в веществе наименьшую скорость. Красные же лучи преломляются меньше других потому, что их скорость в веществе наибольшая. Это означает, что показатель преломления вещества, из которого сделана призма, зависит не только от свойств самого вещества, но и от частоты проходящего через него света.

С помощью дисперсии света объясняются многие явления природы, например, радуга. Она является одним из самых красивых явлений природы и поэтому поэтизировалась многими народами:

Как неожиданно и ярко,

На влажной неба синеве,

Воздушная воздвиглась арка

В своём минутном торжестве!

Один конец в леса вонзила,

Другим за облака ушла — Она полнеба обхватила

И в высоте изнемогла.

Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате чего белый свет разлагается в спектр.

Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим окружностям (дугам). При этом радуга появляется только в том случае, если угловая высота Солнца над горизонтом не превышает 42 о .

Дисперсией света объясняется возникновение и такого явления, как гало. Его можно наблюдать зимой в виде кругов, столбов или крестов вокруг Солнца и Луны. Здесь дисперсия происходит в ледяных кристалликах на высоте около 10 км в верхних слоях тропосферы.

Дисперсия присуща всем средам, кроме вакуума. Её можно представить в виде зависимости показателя преломления вещества от частоты падающего света. Как показали различные опыты, для большинства веществ показатель преломления уменьшается с уменьшением частоты. Причём зависимость эта нелинейная. Дисперсию такого рода называют нормальной.

Однако в парах йода и в некоторых жидкостях учёные наблюдали и аномальную дисперсию. При такой дисперсии показатель преломления увеличивается с увеличением длины волны. Проще говоря, в них скорость распространения красных лучей меньше, чем фиолетовых.

В настоящее время, для получения хороших и ярких дисперсионных спектров используются специальные оптические приборы — спектроскопы и спектрографы. Первый спектроскоп был изобретён в 1815 году немецким физиком Йозефом Фраунгофером. Он состоял из окуляра, зрительной трубы, двух объективов, коллиматора и дифракционной щели.

В оригинальном дизайне спектроскопа свет, прошедший через щель, расположенную в фокальной плоскости коллиматорной линзы, преобразовывался в тонкий световой пучок и попадал на призму. Из призмы выходят уже параллельные пучки разного направления, которые, преломившись в линзе зрительной трубы, образуют в её фокальной плоскости изображение щели. Если исследуется белый свет, то изображения щели сливаются в одну цветную полосу всех основных цветов. Если же исследуемый свет является монохроматическим, то спектр получается в виде узких линий, разделённых широкими тёмными промежутками.

Таким образом, с помощью призмы, как и с помощью дифракционной решётки, можно получить спектр некоторого излучения. Однако в дисперсионном и дифракционном спектрах имеются различия:

1) для дифракционного спектра можно создать равномерную шкалу по λ. Для дисперсионного спектра этого сделать нельзя, так как зависимость показателя преломления от длины волны является нелинейной функцией.

2) в дисперсионном спектре большее отклонение от первоначального направления испытывают фиолетовые лучи, в дифракционном же — красные.

3) в дифракционном спектре наблюдается несколько порядков спектра, в дисперсионном — один.

Итак, мы уже выяснили, что окружающий нас мир является красочным именно потому, что солнечный свет является сложным. Но всё же пока не ясно, почему же окружающий нас мир пестрит различными красками. И почему различные предметы, освещённые одним и тем же солнечным светом, имеют разный цвет?

Чтобы разобраться в этом, получим на экране спектр белого света. Теперь возьмём цветную бумажную полоску (например, зелёного цвета) и закроем ей часть спектра. Обратите внимание на то, что цвет полоски остался зелёным только в той области спектра, где на неё падают зелёные лучи. В жёлтой области спектра наша бумажка изменила оттенок. А в остальных частях спектра она выглядит тёмной.

Это говорит нам о том, что тела, имеющие зелёную окраску, способны отражать в основном лучи зелёного цвета, а остальные поглощают. Аналогично тела, имеющие красную окраску, в основном отражают красные лучи. Белые тела, которые освещаются дневным светом, в равной степени отражают лучи всех цветов, поэтому мы их и видим белыми. Чёрные же тела, наоборот, поглощают практически все падающие на них лучи. Что касается прозрачных тел, то их цвет обусловлен составом того цвета, который прошёл через них.

Естественное освещение и требования к нему

  1. Факты о естественной освещённости и зрении
  2. Пыль – один из вреднейших загрязнителей
  3. Норма освещения для рабочего места
  4. Уровень освещённости в офисе
  5. Гигиенические требования к естественному освещению жилища
  6. Нормативные требования в кратком изложении
  7. Принципы нормирования освещённости
  8. Требования к освещению
  9. ЦВЕТОВОЕ ОФОРМЛЕНИЕ ОБОРУДОВАНИЯ И ПРОИЗВОДСТВЕННОГО ПОМЕЩЕНИЯ
  10. Гигиенические требования к естественному освещению
  11. Какие документы регулируют освещенность?
  12. Гигиенические требования к естественному и искусственному освещению
  13. Методы оценки естественного света
  14. Светотехнический метод
  15. Угол отверстия
  16. Коэффициент глубины заложения (КЗ)
  17. СИСТЕМЫ ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ И ТРЕБОВАНИЯ К НИМ
  18. Методы оценки искусственного света
  19. Расчет яркости освещаемой поверхности
  20. Расчет коэффициента равномерности освещения
  21. Расчетный метод «Ватт»
Читайте также:  Закон преломления света: формулировка и формула и описание явления преломления

Факты о естественной освещённости и зрении

Как уже было сказано ранее, дневной свет необходим в зданиях

Его должно быть достаточно в школе, хотя не менее важно правильное освещение небольшого торгового зала или даже склада. В жизни машинистов поездов, а также водителей общественного и частного транспорта освещение вообще играет ключевую роль

Им нужно чётко видеть и различать сигналы, показания приборов, находящихся на пультах управления. Также водителям следует хорошо видеть дорогу впереди себя. В данном случае правильное распределение световых источников — залог безопасности шофёра и пассажиров.

Человеческий глаз различает предметы благодаря разнице в яркости самого объекта и фона — это контрастная чувствительность. Чем меньшие различия замечает человек, тем выше контрастная чувствительность его глаз. Однако у неё есть предел, после которого она уменьшается.

Кроме того, у глаз есть разрешающая сила, связанная со способностью различать мельчайшие детали. В норме она равна единице. Разрешающая сила уменьшается с повышением чувствительности глаза к мелким элементам.

Острота зрения обратно пропорциональна разрешающей силе. Она как раз увеличивается при повышении способности человека замечать мельчайшие детали. Если разрешающая сила человека составила 2, то острота его зрения равна 0,5.

Работу зрения определяет ряд факторов:

  • яркость предмета, который рассматривает человек;
  • контрастность между предметом и фоном, а также временем рассматривания и угловыми размерами.

Зрительная работа глаза становится лучше, если рабочая поверхность качественно освещается. Также из поля зрения следует устранить блескость. Зрительная работа делится на 5 разрядов (см. таблицу).

Точность работы зрения Минимальный размер различаемого предмета Разряд работы зрения
Наивысшая До 0,15 мм I
Очень высокая 0,15 — 0,3 мм II
Высокая 0,3 — 0,5 мм III
Средняя 0,5 — 1 мм IV
Малая 1 — 5 мм V

Влияние освещенности на зрение

Пыль – один из вреднейших загрязнителей

Врачи-гигиенисты
давно заметили, что пыль при попадании в организм вредит человеку несколькими
способами. Русский доктор Ф. Ф. Эрисман описал этот процесс в своих научных
трудах. Оказывается, пыль повреждает дыхательную систему, царапая ее острыми
кромками мелких частиц (механическое воздействие), вызывает отравление
ядовитыми веществами (химическое воздействие), транспортирует внутрь человека
болезнетворные бактерии и вирусы (бактериологическое воздействие).

Пыль
всегда «водит хороводы» в воздушном пространстве вокруг нас. И никуда не деться
от нее. Особенно остро эта проблема стоит в заводских цехах и помещениях.
Мелкие частицы производственной пыли размером до 5 микрометров проникают в
легкие очень глубоко – до самых альвеол. Значит и вредное воздействие
усиливается. А частички размером от 5 до 10 микрометров, как правило, остаются
в верхних дыхательных путях.

Для
оценки вредного воздействия пыли на организм человека необходимо знать ее примерное
количество в воздухе и состав. Содержание пыли в воздушном бассейне измеряется
массой пылевых частиц на единицу объема и выражается в миллиграммах на метр
кубический. Иногда используется другое значение – конкретное число частиц пыли
в 1 одном кубическом сантиметре воздуха.

Определяющим
фактором, влияющим на развитие пылевой патологии, является масса скопившейся в
организме пыли. Хотя ее количество как раз и зависит от концентрации пылевых
частиц в воздухе и их дисперсности.

Норма освещения для рабочего места

Есть различные показатели, в которых указано оптимальное количество люксов на разные объекты. Главные группы – это офис, производственный объект, склад, а также жилое здание. Все требования составлены по СНиП и указываются в Лк на каждый участок.

Уровень освещённости в офисе

  1. Для офиса общего назначения, где используется компьютерное устройство – 200-300 Лк.
  2. Для офисов с большой площадью и дизайнерской планировкой – 400 Лк.
  3. Для офисов, в которых производятся работы с чертежами – 500 Лк.
  4. Для конференц зала – 200 Лк.
  5. Для лестницы и эскалатора – 50-100 Лк.
  6. Для коридора и холла – 50-75 Лк.
  7. Для архива – 75 Лк.
  8. Для кладовой – 50 Лк.

Гигиенические требования к естественному освещению жилища

Показатели. Наибо­лее распространенными способами оценки естественного освещения являются светотехнический и геометрический. К первому относится определение коэффициента естествен­ной освещенности (КЕО), ко второму — определение све­тового коэффициента, угла падения световых лучей, угла отверстия.

КЕО — это отношение освещенности точки, находящей­ся внутри помещения, к одновременной освещенности горизонтальной поверхности, расположенной вне помещения и освещаемой рассеянным светом всего небосвода.

где Еп — освещенность (лк) точки, находящейся внутри по­мещения на расстоянии 1 м от стены, противоположной ок­ну; Е0 — освещенность (лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом всего небосвода.

Величина этого коэффициента выражается в процентах и нормируется в зависимости от назначения помещения и характера выполняемой работы в нем. Для жилых поме­щений КЕО должен быть не менее 0,5

Угол падения световых лучей образован двумя линиями, исходящими из одной точки на столе к верхнему и нижнему краю окна. Величина этого угла уменьшается по мере удаления от окна. Нормальная освещенность естественным светом будет обеспечиваться, если угол падения световых лучей будет составлять менее 27 градусов. Этот показатель позволяет только ориентировочно судить об уровне естест­венной освещенности помещений, так как не учитывает многих факторов, влияющих на величину и продолжитель­ность освещения. К нему необходимо прибегать, когда КЕО определить невозможно (отсутствуют графики, номограм­мы и соответствующие таблицы).

Читайте также:  Осветительные приборы (для дома): назначение и классификация по типам

Угол отверстия позволяет судить о величине небесного свода, непосредственно освещающего исследуемое место. Чем больше угол, тем больше видимый участок неба и тем лучше освещение.

Угол отверстия образован также двумя линиями, исхо­дящими из точки наблюдения к верхнему краю окна и к верхней точке противостоящего здания или дерева (затемняющего свет предмета), расположенного перед окном вне здания. Величина этого угла характеризует видимую часть небосвода, т. е. дает представление о степени затемнения помещения высокими предметами, находящимися перед ок­нами. Величина угла отверстия должна составлять не ме­нее 5 градусов.

Световой коэффициент — это отношение застекленной поверхности окон к площади пола в помещении. Он выра­жается дробью. В числителе ставят величину застекленной поверхности окон, а в знаменателе — величину площади пола. Числитель принимают за единицу, а в знаменателе в таком случае ставят число, показывающее, какую часть площади пола занимает застекленная поверхность окон. Норма светового коэффициента зависит от характера осве­щения. Для жилых помещений он должен быть не менее 1/8—1/10.

Все вышеперечисленные показатели естественного осве­щения в той или иной степени связаны с инсоляцией поме­щений. Инсоляция — это облучение поверхностей прямыми солнечными лучами. В соответствии с «Санитарными нор­мами и правилами обеспечения инсоляции жилых помеще­ний и общественных зданий, а также территории жилой застройки городов и других населенных пунктов» на территориях и в помещениях необходимо обеспечить непрерывное прямое солнечное облучение не менее трех часов в день для зданий на период с 22 марта по 22 сентября в районах начиная с 60° с. ш. и южнее, с 22 апреля по 22 августа для районов севернее 60° с. ш. Условия инсоляции территории и помещений рассчиты­вают при выборе типов зданий и их ориентации, при опре­делении взаимного размещения зданий, выборе участков для детскихучреждений и школ, игровых и хозяйственных площадок.

Рубрики: Общая информация о строительстве.Метки: Естественное освещение.Оставить комментарий

Нормативные требования в кратком изложении

Основным нормативным документом, регламентирующим естественное освещение помещений жилых зданий является СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» (скачать сканированную копию) с изменениями и дополнениями 2010 года (скачать).

В нормах указаны значения нормативного показателя естественного освещения помещений – КЕО (коэффициент естественной освещенности) и определены контрольные точки в которых эти значения должны быть обеспечены.

Естественное освещение в жилых зданиях нормируется только в жилых комнатах и кухнях, не считая общедомовых путей эвакуации. В других помещениях допускается отсутствие естественного освещения.

Естественное освещение участков территорий, как городских, так и садовых, в нормах не оговаривается. Для участков территорий существуют нормы инсоляции (скачать сканированную копию), но нормативов по естественному освещению участков территорий не существует.

Нормативное значение КЕО зависит от расположения светопроема (боковое или верхнее). Учитывая, что верхнее естественное освещение жилых помещений является экзотикой и менее чувствительно к затенению окружающей застройкой, далее мы будем рассматривать только естественное освещение помещений с боковым расположением светопроемов. В этом случае значение КЕО должно составлять 0,5%. СанПиН 2.2.1/2.1.1.1278-03 предусматривает иные значения для кабинетов и детских, но в проектной практике они практически не используются, за исключением строительства частных домов по индивидуальному заказу. Предполагается, что жильцы жилых домов массового строительства принимают назначение комнат по своему усмотрению, отводя под детские и кабинеты наиболее светлые помещения квартир. Кроме того, в более новом СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» эти значения не приводятся.

Естественное освещение помещения зависит не только от значения КЕО, но и от расположения точки, в которой оно обеспечивается. Во всех жилых помещениях расчетная (конрольная) точка КЕО располагается на полу, по оси помещения. В случае, если комната имеет непрямоугольную форму, для верного расположения расчетной (контрольной) точки следует привести форму помещения к прямоугольнику, одной из сторон которого принимается стена со светопроемом.

Нормативное значение КЕО в зависимости от состава комнат в квартире должно обеспечиваться в либо в центре помещения, либо в глубине (на расстоянии 1 м от стены наиболее удаленной от окна со светопроемом). В глубине помещения расчетная точка должна располагаться в жилой комнате однокомнатной квартиры, в одной из комнат двух- и трехкомнатных квартир либо в двух комнатах квартир, имеющих больше трех комнат. В других жилых комнатах квартир и кухнях контрольная точка располагается в центре помещения. Особо оговаривается случай, когда в жилых комнатах имеется два окна в противоположных или расположенных под углом стенах (двухстороннее естественное освещение). В этом случае контрольная точка КЕО располагается в центре помещения, в том числе в однокомнатных квартирах.

Принципы нормирования освещённости

Как было сказано ранее, степень освещённости помещения должна отвечать стандартам СНиП от 23 мая 1995 года «Естественное и искусственное освещение». В документе указаны гигиенические требования, методы и принципы оценки освещённости, а также коэффициент естественного освещения, которому обязаны соответствовать различные виды помещений.

Эти санитарные нормы учитывают не только назначение помещения (общественное, жилое, административно-бытовое), но и разряды зрительной работы. Также в документе говорится о световых проёмах и приводится районирование России по световому климату. Российскую Федерацию делят на 5 климатических районов.

  1. Смоленская, Рязанская, Калужская, Московская, Тульская, Владимирская, Новосибирская, Курганская, Свердловская, Кемеровская, Нижегородская области, республики Мордовия, Чувашия, Татарстан, Башкортостан, Якутия, Удмуртия, Чукотский автономный округ, Красноярский и Хабаровский края.
  2. Орловская, Курская, Белгородская, Читинская, Брянская, Пензенская, Липецкая, Самарская, Воронежская, Саратовская, Сахалинская, Магаданская, Ульяновская, Волгоградская, Тамбовская области. Республики Коми, Кабардино-Балкария, Чечня, Ингушетия, Алтай, часть Якутии, Тыва, Бурятия. Ханты-Мансийский АО, часть Хабаровского края.
  3. Псковская, Калининградская, Новгородская , Ярославская, Тверская, Ивановская, Костромская, Вологодская, Кировская области. Карелия. Ненецкий и Ямало-Ненецкий АО.К
  4. Мурманская и Архангельская области.
  5. Астраханская, Амурская области; Ставропольский, Краснодарский и Приморский края. Республики Дагестан и Калмыкия.
Читайте также:  Естественное освещение (виды, системы и нормы)

Нормирование оконных проемов в зависимости от светового климата

Для каждого из этих регионов приводятся необходимые показатели искусственного и естественного освещения (см. таблицу по солнечному свету):

Проёмы для света (расположение)

Стороны света, где расположены световые проёмы

Виды и типы освещения.

В современной культуре деятельность человека связана со светом. Виды освещения помещений бывают разными по типу, а также назначению. Рассмотрим подробно виды, назначение, варианты использования для жилых или производственных пространств. Классифицировать освещение можно по виду, источнику и предъявляемым требованиям.

Различают три основных вида:
  1. Естественное;
  2. Искусственное;
  3. Совмещённое (или комбинированное);

Прежде всего, освещение делят на естественное и искусственное, а использование обоих видов называют комбинированным.

Естественное освещение

Природный источник света зависит напрямую от стадии суток, сезона, погодных условий, а также географического расположения конкретной местности. Важно направления здания по сторонам света, чтобы максимально использовать окружающую среду на благо человека.

Естественное освещение является для людей наиболее комфортным, благоприятным, физиологически важным, правильным. Большинство регионов страны обеспечить норму дневного света невозможно из-за климатических условий, широты, на которой расположено здание. Эти факты являются как достоинствами, так и недостатками естественного освещения.

Искусственное освещение

С древних времен человек научился освещать своё жилище с помощью огня. Со временем цивилизация развивалась, а с изобретением электричества искусственное освещение стало постепенно доступным для каждого дома или производства. Для реализации правильной системы в пространстве используют несколько видов ламп освещения — накаливания, люминесцентные или светодиодные.

Искусственный свет бывает нескольких видов, рассмотрим подробнее каждый из них.

Общий. Равномерное освещение пространства достигается с помощью распределения потолочных светильников на равном расстоянии по всей площади. Напряжение потолочных ламп, как правило, самое мощное, из представленных, на рынке. Производственные помещения освещают лампами дневного накаливания, расположенными на потолке. Такой способ обеспечивает нормальные показатели, необходимые для безопасной работы сотрудников на предприятии. В жилых помещениях общий свет локализован, как правило, в центре потолка. В домах большой площади потолочное освещение распределяют равномерно на несколько светильников, а также современные тенденции рекомендуют распределять верхнее искусственное освещение в нескольких уровнях.

Местное. Наиболее комфортным считается освещение, которое называют местным или локальным. Источник, устанавливают непосредственно близко к рабочей зоне, например над обеденным столом, варочной поверхностью, раковиной на кухне. Для прихожей комнаты местным может быть светильник у зеркала, над вешалкой, у входной двери. Каждая комната квартиры требует своего расположения светильников, например, для спальни будет уместно повесить по бокам кровати небольшие настенные бра, в гостиной такой зоной становится мягкий уголок или рабочий стол с компьютером. Как правило, местный свет работает в узкой зоне направленного потока.

Комбинированное. Как для жилых помещений, так и для промышленных зданий, будет лучшим вариантом обустроить оба вида, чтобы иметь возможности пользоваться всеми способами доступного искусственного освещения. Таким образом, будут решены несколько задач: пространство будет освещено рассеянным искусственным с потолка, а для некоторых видов труда используют направленный искусственный поток, только при необходимости.

Совет: Если вы планируете несколько видов освещения, то постарайтесь проект проводки электрических коммуникаций выполнить до начала ремонта.

Типы естественного освещения

Естественное освещение по своей природе является наиболее правильным как для жилых, так и для офисных помещений. Естественный — не мерцает, глаза при нём не устают, цветопередача остается без искажений, а также не расходуется электрическая энергия. Солнечный свет освещает, согревает помещение — его присутствие наполняет помещение атмосферой уюта и комфорта.

За все время существования культуры и развития цивилизации человечество разработало несколько способов освещения комнат естественным светом.

Условно эти приёмы можно разделить на три вида естественного освещения: боковое (а,б), верхнее (в) и комбинированное (г).

Боковое − поступает в помещение через оконные проёмы, напрямую зависит от количества окон. В любом случае, даже при больших окнах показатели уже к середине комнаты снижаются на 50% солнечного света, а до противоположной стены оно просто не достает.

Совет: Если ваш дом, строится по индивидуальному проекту, то вполне возможно сделать увеличенный проём окон или расположить большее количество окон с юго-восточной стороны здания.

Верхнее − спускается с потолка, считается идеальным и его использование дает наиболее полноценное проникновение света во все уголки пространства. Для обеспечения естественного света через потолок необходимо внести в проект использование специальных стекол и конструкций, позволяющих осуществить данный проект. К тому же следует помнить, что данный способ подойдет только для верхнего этажа здания или в одноэтажном строительстве.

Комбинированное − наиболее удачным считается совмещать доступные способы поступление света, при котором учитываются все возможные варианты в данном конкретном проекте. При использовании комбинированных способов стоит обратить внимание не только на светопроходимость стекол, но и энергосберегающие технологии, поскольку оконные проёмы, особенно в потолке расходуют тепло дома.

Читайте также:  Комбинированное освещение: описание, разновидности и методы проектирования

Основные виды искусственного освещения

Современные технологии позволяют вести нормальную жизнедеятельность в разное время суток, благодаря источникам искусственного освещения, которые позволяют регулировать уровень и направленность. Все виды систем различают по функционалу и расположению в пространстве. Рассмотрим подробнее каждый вариант.

Для промышленного производства классификация искусственного освещения делится на рабочее, аварийное (для безопасности и эвакуационное), а также охранное и дежурное.

Рабочее − обеспечивает необходимый уровень искусственного освещения для выполнения трудовых обязанностей на производстве или дома в мастерской, на кухне, библиотеке, за письменным столом;

Аварийное – для производственных, офисных и медицинских учреждений предусматривается аварийное включение, которое автоматически срабатывает при перерывах электроснабжения. Такой вид работает от специального генератора, который включается при необходимости.

Некоторые стратегически или социально важные предприятия имеют дополнительный резервный источник искусственного питания. Аварийный искусственный свет, обычно разделяют на безопасный (включается при необходимости резервного питания), или эвакуационный (используется по направлению к основному или запасному выходу);

Охранное – располагают по периметру всей, охраняемой, территории, а используется обычно, только в тёмное время суток;

Дежурное − применяют для нерабочего времени, а его интенсивность не нормирована, зависит от конкретных задач (например, для лестничных клеток или коридоров);

В истории искусственное освещение, принято делить на: общее, акцентное, локальное и декоративное.

Общее – обычно, понимается как наличие потолочных светильников или люстры;

Акцентное − используют, чтобы выделить конкретный участок помещения, например, мягкий уголок для гостиной или пространство рядом с вешалкой прихожей; в торговых залах акцентный искусственный свет помогает увеличить продажи товара;

Локальным − называют местный свет, используют для улучшения видимости на рабочем месте, например кухни или компьютерного стола;

Декоративное − применяют как украшение пространства дома, витрин магазинов, на период праздника или если дизайнерская идея предусматривает такой декораторский приём с использованием ламп разного цвета и формы.

Нормы освещенности или сколько требуется человеку света

Довольно часто человек ощущает психологически нехватку солнечного света, особенно в регионах, где недостаток солнца существенный из-за природных условий. Искусственное освещение призвано восполнить этот пробел до нормы. Понятие нормы в данном случае размыто, но научно доказано, что примерно 9-10 часов в сутках человек обязан находиться при свете, даже если искусственном.

Расчеты нормы естественного освещения измеряется в единицах «люкс», например в солнечную погоду измерения равны 100000Лк, а в помещении, даже около окна будет немногим больше 100Лк, что сразу говорит о недостаточности для растений и человека.

Виды освещения, его нормирование зависит от типа помещений. Методика расчета, его санитарные нормы колеблются в пределах 150-200Лк для комнат общего пользования, таких как кухня, гостиная, ванная комната.

Для коридоров, прихожих, спален или балкона норма будет ниже 100Лк. А вот рабочие зоны на кухне, за письменным столом, для чтения следует дополнительно оборудовать лампами искусственного света.

Считается, что нежилые помещения, такие как офис, спортивный зал и производственные цеха поддерживают искусственное освещение на уровне от 200 до 300Лк, чтобы стимулировать людей к активным действиям.

Измерение освещенности

В самом общем понимании, под освещением понимают световой поток относительно конкретной площади. Стандартные требования к естественному или искусственному освещению различны, измеряются в люксах относительно к квадратному метру, поверхности. Люмен – это единица светового потока (международное значение). Гигиенические требования к естественному и искусственному освещению различны.

Строгие измерения производят на производствах, поскольку в жилых помещениях главное условие − это безопасность, комфорт для семьи. Источником естественного света является солнце и отраженный свет луны, а искусственного — разнообразные электрические конструкции. Дополнительное — дают экраны телевизоров, мониторы компьютеров, дисплеи смартфонов и другие приборы бытового назначения.

Прибор для измерения потока света называется люксметр, который выпускается компактного размера, имеет простой базовый интерфейс. Выпускаются аналоговые или цифровые устройства, а используют их профессиональные электрики, дизайнеры, специализирующиеся на монтировке светового оборудования.

Как правило, измерения искусственного или естественного света выполняют одинаково, но величина нормы отличается. Важно следить, чтобы на прибор не падала тень, способная исказить полученные данные. Результаты измерений сверяют с нормативными значениями и выносят заключение соответствия стандартам.

Показатели естественного освещения отвечают нормативным коэффициентам освещенности, измеряются в точках наиболее удалённых от окон помещения и под открытым небосводом на таком же горизонтальном уровне, выражается в процентном соотношении.

Искусственный свет для помещения считается важным критерием, влияющим на производственные показатели, здоровье сотрудников, комфортные условия труда и отдыха.

Что такое естественное освещение и каким бывает

Зрительное восприятие играет ключевую роль для деятельности человека. Поэтому обеспечение требуемого уровня освещённости – одна из первостепенных архитектурных задач. Для её решения свет от источников (одного или нескольких) подводится к освещаемым пространствам и объектам. Если источник света – лучи солнца (прямые или рассеянные через облачный покров), такое освещение называется естественным.

В статье проводится краткий обзор естественного освещения и вопросов, связанных с ним: что такое естественное освещение, какие типы естественного освещения бывают, как оно нормируется, какие документы его регламентируют, от чего зависит, каковы особенности его использования и другие.

Естественное освещение – что это такое

К естественному освещению относят освещение помещений солнечными лучами (прямыми или рассеянными облачным покровом), проходящими в помещение через световые проёмы в конструкциях здания.

Главная особенность естественного освещения – зависимость от множества факторов, среди которых немало изменчивых. Освещённость одного и того же помещения естественным светом может существенно различаться даже в одно и то же время суток. Поэтому расчёт естественного освещения – сложная задача. Чаще всего она решается так, чтобы обеспечить необходимую освещённость в среднем, учитывая, что при недостатке освещённости включится дополнительное искусственное освещение.

Читайте также:  Интенсивность света: формула через длину волны и единицы измерения

Типы естественного освещения

Естественное освещение осуществляется наружным светом, проникающим внутрь здания. Его разделяют по тому, как это происходит. Поскольку свет может попадать в здание сверху или сбоку, естественное освещение делится на следующие виды.

Верхнее освещение

Внешний свет проникает в здание через фонари на крыше:

Другой вариант верхнего освещения – свет проникает в здание в местах перепада высот:

Боковое освещение

При нём внешний свет проходит через световые проёмы в наружных стенах здания:

Комбинированное освещение

Комбинированное освещение – это одновременное использование верхнего и бокового освещения в любых сочетаниях:

В большинстве современных зданий используется один из типов естественного освещения. Исключения – сооружения, где отсутствие естественного света определяется технологическим процессом.

Иногда классификация естественного освещения проводится в зависимости от характера светового потока. Выделяют три вида:

  • Направленное освещение, когда используется направленный световой поток из проёмов. Он лучше всего выделяет границы объектов и обеспечивает высокий светомоделирующий эффект.
  • Направленное бестеневое освещение, в котором интерьер освещается светом, отражённым от поверхностей сразу после попадания в помещение.
  • Отражённое бестеневое освещение, когда объекты в помещении освещаются только отражённым от поверхностей светом, а световые проёмы скрыты от наблюдателя.

к содержанию ↑

Регламентирующие документы

Поскольку естественное освещение используется в большинстве современных зданий, перечислим нормативные акты, регламентирующие эту сферу.

В первую очередь это свод правил СП 52.13330.2016 «Естественное и искусственное освещение» (вместо СНиП 23-05-95). В документе формулируются необходимые понятия, устанавливаются требования к разным видам освещения, в том числе к естественному.

Кроме того, существуют своды правил по проектированию и строительству, регламентирующие естественное освещение. Это свод СП 367.1325800.2017 «Здания жилые и общественные. Правила проектирования естественного и совмещённого освещения» и свод СП 419.1325800.2018 «Здания производственные. Правила проектирования естественного и совмещённого освещения».

В этих сводах устанавливаются нормируемые параметры освещения и приводятся методы их расчёта для помещений с боковой и верхней системами освещения.

Гигиенические требования к освещению регламентируются СанПиН 2.2.1/2.1.1.1278-03.

Существует несколько ГОСТов, относящихся к естественному освещению. Например, ГОСТ 24940-2016 «Здания и сооружения. Методы измерения освещённости» устанавливает методы определения минимальной, средней и цилиндрической освещённостей, коэффициента естественной освещённости (КЕО) и некоторых других величин.

Использование естественного света

Коэффициент естественной освещённости (КЕО)

Важнейшая особенность естественного освещения – непостоянная интенсивность. В зависимости от ситуации его уровень меняется в течение короткого времени. Поэтому для расчётов и нормирования естественного освещения используются не показатели светового потока, яркости и освещённости, а специальный коэффициент естественной освещённости (КЕО).

Коэффициент КЕО – отношение естественной освещённости в данной точке внутри помещения Ев к
одновременному значению наружной горизонтальной освещённости Ен,
создаваемой светом полностью открытого небосвода:

Коэффициент естественной освещённости показывает, сколько процентов наружного рассеянного света попадает в помещение.

Регламентирующие документы устанавливают минимальные значения КЕО в зависимости от вида работ и типа естественного освещения. Для ответственной деятельности, требующей хорошего освещения, нормативный КЕО – 6% (в случае верхней или комбинированной системы при условии минимального размера объекта зрительного различения 0,15 мм). Для жилых и общественных зданий с боковой системой естественного света при условии редкой необходимости различения мелких объектов нормативный КЕО – 0,1-0,5%.

Интересно! Из значения КЕО видно, что освещённость в помещении до 100 раз меньше освещённости снаружи. При этом человек хотя и видит разницу, воспринимает ее небольшой. Это результат действия приспособительных механизмов глаза. При недостатке освещения зрачок расширяется и сетчатка освещается сильнее, компенсируя ослабление светового потока. Поэтому человек чувствует себя комфортно, несмотря на значительно более низкую освещенность в помещении.

Среднегодовая интенсивность светового потока зависит от географической широты местности. Поэтому территория Российской Федерации разбита на пять зон светового климата, в каждой из которых есть подвиды:

Регламентируемый КЕО зависит от зоны светового климата. Чем севернее, тем регламентируемый КЕО больше. Это связано с тем, что в северных районах солнце находится ниже над горизонтом и степень наружной освещённости меньше. Значит, для обеспечения требуемой освещённости внутри здания количество света, проходящего сквозь световые проёмы, должно быть больше. Это и обуславливает более высокий КЕО для северных регионов.

Кроме того, сводом правил устанавливается точка расчёта КЕО. Для жилых помещений с двусторонним боковым освещением она находится в центре комнаты. Но, как правило, в большинстве жилых помещений окна только с одной стороны. В этом случае точка расчёта КЕО – в метре от стены, противоположной окну. Для жилых помещений с небольшим числом комнат (1-3) расчёт КЕО выполняется для одной комнаты. Если их больше, расчёт проводится для двух комнат, чтобы найти средний КЕО.

Фонари верхнего освещения

Проектирование освещения здания начинается с выбора системы освещения. На него влияет назначение и архитектура объекта, материалы, требования к теплопотерям, географическое местонахождение, расположение по отношению к соседним сооружениям и другие факторы.

Для промышленных зданий чаще всего используется верхнее освещение светоаэрационными и зенитными фонарями.

Светоаэрационные фонари – это специальные надстройки в здании, которые предназначены для обеспечения воздухообмена и освещения помещения.

Читайте также:  Расчет освещения по площади помещения: примеры как найти по формуле и таблице + 2 калькулятора

Чаще всего такие фонари прямоугольной конструкции. Она практичнее в монтаже. Однако для обеспечения более высокого КЕО предпочтительнее использовать треугольные светоаэрационные фонари. Компромисс – фонари трапецеидальной формы.

У светоаэрационных фонарей большие тепловые потери. Применение таких систем естественного освещения оправдано только в помещениях с высоким внутренним тепловыделением или находящихся в южных регионах.

Зенитные фонари имеют меньшие теплопотери. Они предпочтительнее. Зенитные фонари всё чаще применяются не только для промышленных, но и для жилых помещений. Обзор разных типов и конструкций зенитных фонарей есть на нашем сайте в отдельной статье.

Окна бокового освещения

Для жилых помещений чаще всего используются боковые системы естественного освещения со стандартными оконными проёмами. Это объясняется практичностью и надёжностью такого решения. Кроме того, для систем бокового освещения существуют хорошо зарекомендовавшие себя стандартные требования, подходящие для большинства случаев.

Особенность систем бокового освещения – зависимость от расположения здания по отношению к соседним. При плотной застройке рядом с окнами могут создаваться глубокие тени окружающих зданий. Освещённость помещения боковым светом при этом снижается в несколько раз по отношению к освещённости одиноко стоящего здания. Это учитывается при строительстве.

Ещё одна особенность бокового освещения – зависимость от того, где находятся окна. В Российской Федерации солнце светит с юга. Поэтому для северных широт предпочтительно размещение окон на южной стороне зданий, чтобы более полно использовать солнечный свет. Для южных широт важнее слепящее действие солнечного света. Иногда приходится монтировать специальные светоотражающие козырьки над южными окнами, чтобы уменьшить слепящее влияние. Размещение окон на север, северо-запад и запад позволяет избежать этих проблем.

Светопропускающие материалы

Важнейший вопрос организации внешнего освещения – выбор светопропускающего материала. Традиционным является оконное стекло, производящееся методом растяжки или проката. Нередко оно подвергается специальной обработке – тонированию или нанесению особых покрытий. Также появились новые светопропускающие материалы с высокими шумо- и теплозащитными свойствами. За счет этого стало возможным остекление больших площадей фасадов, атриумов, оранжерей и садов. Нередко применяется ламинирование – получение многослойной конструкции из нескольких слоёв стекла и специальной поливиниловой плёнки. В частности, широко распространённый «триплекс» состоит из трёх слоёв – два стекла и плёнки между ними. Главное достоинство ламинированных стёкол – повышенная безопасность при разрушении. У плёнок, используемых при ламинировании, высокая степень прозрачности. Поэтому коэффициент пропускания ламинированного стекла почти столь же высок, как у неламинированного.

Ещё одна технология при организации обеспечения естественного освещения – стеклопакет. В нем два или несколько стёкол герметично соединены друг с другом так, чтобы между ними образовалось пространство, которое заполняется воздухом или специальными газами. Газы подбираются так, чтобы обеспечить повышенную тепло- или звукоизоляцию.

Нередко применяются органические стекла – плексиглас и поликарбонат. Эти материалы легкие в обработке, поэтому из них могут создаваться сложные конструкции остекления. Спорным вопросом остаются пожарные требования – органические стекла – горючие материалы. Но, по мнению ряда исследователей, именно быстрое разрушение зенитных фонарей из органического стекла способствует снижению температуры в помещении и препятствует распространению пожара.

Фотохромные стекла – перспективный материал, применение которого ограничивается высокой ценой. Главная особенность фотохромных стёкол – переменное светопропускание. Коэффициент их светопропускания характеризуется уровнем освещённости. Вечером и в пасмурную погоду фотохромное стекло пропускает максимальное количество света. В полдень под прямыми солнечными лучами светопропускание фотохромных стекол значительно снижается. Это позволяет ограничить слепящее действие солнца без применения козырьков и других конструкций.

Полезно! В последние десятилетия разработаны фотохромные стёкла с управляемым коэффициентом светопропускания. Они являются частью концепции «умного дома» и способны менять светопропускание по заранее заданным программам управления. Желаемая программа может задаваться как центральным управляющим компьютером, так и локально, иконками-пиктограммами на самом стекле с помощью сенсорного управления (подобно управлению на смартфонах или планшетах).

Заключение

Естественное освещение зданий и помещений широко используется в современной жизни. Для промышленных объектов чаще всего применяется верхнее естественное освещение. Для жилых помещений предпочтительнее боковое естественное освещение. Естественное освещение нормируется специальным коэффициентом естественной освещённости (КЕО). Оно реализуется с помощью фонарей или окон, имеющих светопропускающие поверхности из силикатного или органического стекла.

Естественное освещение: виды и основные аспекты выбора

Системы естественного освещения являются идеальным вариантом практически для любых зданий и сооружений. Ведь в отличии от искусственного света естественный не имеет мерцаний, обеспечивает полную светопередачу, комфортен для глаз и конечно же является совершенно бесплатным.

Да и вообще приятный, согревающий луч света всегда наполняет комнату особой атмосферой. Поэтому не удивительно что с древних времен люди стараются в своих зданиях обеспечить максимум естественного света.

  • Типы естественного освещения
  • Методы правильного планирования естественного освещения
    • Нормы естественного освещения зданий
    • Выбор оконных систем для здания
    • Сочетание норм КЕО и норм освещённости
  • Вывод

Типы естественного освещения

За время своего развития человечество придумало немало способов обеспечить свое жилище солнечными лучами. Но все эти способы условно можно разделить на три способа.

  • Наиболее часто применяемым является боковое освещение. В данном случае свет струится через проем в стене и падает на человека сбоку. Откуда пошло и название.

Боковое освещение достаточно просто реализуемо и обеспечивает качественную освещенность внутри дома. В то же время в широких залах, когда стены противоположные от окна расположены далеко, солнечный свет далеко не всегда достает во все уголки комнаты. Для этого увеличивают высоту оконных проемов, но такой выход не всегда возможен.

Читайте также:  Закон отражения света: кто открыл, формула и математическая запись

  • Более интересным для таких помещений является верхнее освещение. В этом случае свет падает из проемов в крыше и струится на человека сверху.

Такой вид освещения является практически идеальным. Ведь при правильном планировании можно обеспечить освещенность любого уголка дома.

Но как вы понимаете он возможен только при одноэтажном планировании. Да и теплопотери у такого вида естественного освещения на порядок выше. Ведь теплый воздух всегда поднимается вверх, а там холодные окна.

  • Именно поэтому существует освещение естественное комбинированное. Оно позволяет взять лучшее из первых двух видов. Ведь комбинированным называется освещение, при котором свет на человека падает как сверху, так и снизу.

Но как вы понимаете такой вид освещения так же возможен только в одноэтажном здании или на верхних этажах многоэтажных зданий. Но вот стоимость таких оконных систем является не маловажным ограничивающим фактором их применения.

Методы правильного планирования естественного освещения

Но зная виды естественного освещения мы не на шаг не приблизились к раскрытию вопроса как организовать правильное освещение у себя дома? Для ответа на него давайте мы шаг за шагом разберем основные этапы планирования.

Нормы естественного освещения зданий

Для того чтоб правильно спланировать освещение мы прежде всего должны ответить на вопрос, а какое оно должно быть? Ответ на этот вопрос нам дает СНиП 23 – 05 – 95 который устанавливает нормы КЕО для промышленных, жилых и общественных зданий.

  • КЕО – это коэффициент естественного освещения. Он является соотношением между уровнем естественного освещения в определенной точке дома и освещенностью вне помещения.
  • Оптимальность данного параметра рассчитана научно-исследовательскими институтами и сведена в таблицу, которая стала нормой при проектировании. Но дабы пользоваться этой таблицей нам необходимо знать нашу широту.

  • Из уроков БЖД и географии вы должны помнить, что чем южнее, тем интенсивность солнечного потока выше. Поэтому вся территория нашей страны была разделена на пять зон светового климата, каждая из которых имеет два подвида.
  • Зная нашу зону светового климата, мы наконец можем определить необходимый нам КЕО. Для жилых зданий он составляет от 0,2 до 0,5. Причем чем южнее, тем КЕО меньше.
  • Это связано опять-таки с географией. Ведь чем южнее, тем освещенность вне помещения выше. А КЕО это отношение освещенности вне помещения и внутри его. Соответственно для создания одинакового уровня освещенности для домов на юге и севере последним придётся приложить больше усилий.

  • Чтоб двигаться дальше, нам необходимо узнать, а где эта точка в доме для которой мы будем определять уровень освещенности? Ответ на этот вопрос нам дают п.5.4 – 5.6 СНиП 23 – 05 -95.
  • Согласно им, при двухсторонем боковом освещении жилых помещений нормируемой точкой является центр комнаты. При одностороннем боковом освещении нормируемой точкой является плоскость в метре от стены противоположной окну. В остальных помещениях нормируемой точкой является центр помещения.

Обратите внимание! Для одно-, двух- и трехкомнатных квартир такой расчет делается для одной жилой комнаты. В четырехкомнатной квартире такой расчет делается для двух комнат.

  • Для верхнего и комбинированного освещения нормируемой точкой является плоскость в метре от наиболее затемненных стен. Эта норма относится и к промышленным помещениям.
  • Но все что мы привели выше инструкция предписывает применять для жилых и общественных зданий. С производственными все немного сложнее. Дело в том, что производства бывают разные. На одних обрабатываю метровые заготовки, а на других имеют дело с микросхемами.
  • Исходя из этого все виды работ разделили на восемь классов в зависимости от разряда зрительной работы. Там, где обрабатывают изделия меньше 0,15 мм отнесли к первой группе, а там, где точность не особенно нужна отнесли восьмой. И вот для промышленных предприятий КЕО выбирают исходя из разряда зрительной работы.

Выбор оконных систем для здания

Естественный свет в наше здание будет проникать через окна. Поэтому зная нормы, которые нам необходимо соблюсти, можно переходить к выбору окон.

  • Самой перовой задачей является выбор оконных систем. То есть мы должны определиться какое у нас будет освещение – верхнее, боковое или комбинированное в каждой комнате. Для ответа на этот вопрос нужно учитывать архитектурное строение здания, его географическое расположение, используемые материалы, теплоэффективность дома и конечно не маловажную роль отыграет цена.
  • Если вы делаете выбор в пользу верхнего освещения, то вы можете использовать так называемые светоаэрационные или зенитные фонари. Это специальные конструкции, которые зачастую кроме света обеспечивают еще и вентиляцию зданий.
  • Светоаэрационные фонари в большинстве случае имеют прямоугольную форму. Это связано с удобством монтажа. В то же время наиболее удачными в плане освещения считается треугольная форма. Но для треугольных фонарей практически не существует надёжных систем поднятия окон для вентиляции.
  • Светоаэрационные фонари обычно устанавливают над промышленными зданиями с большим внутренним тепловыделением, либо на зданиях, расположенных в южных широтах как на видео. Это связано с большими тепловыми потерями таких оконных систем.

Типы освещения в квартире: естественное, искусственное, совмещенное и декоративное

В этой статье поговорим на интересную тему — обсудим естественное и искусственное освещение. Разберем правила и нормы, которыми следует руководствоваться при разработке светодизайна. Вы узнаете, сколько света нужно для комфортного проживания в квартире.

Читайте также:  Расчет освещения по площади помещения: примеры как найти по формуле и таблице + 2 калькулятора

Что такое естественное освещение

Естественный свет — лучи солнца, проникающие в помещение. Такие потоки комфортны для глаз и наполняют комнаты атмосферой уюта.

Чтобы “впустить” в помещения побольше света, профессионалы изучают конструктивные особенности зданий и стараются учесть все факторы. Важно знать, как подразделяются системы естественного освещения. Условно можно выделить три типа:

  • Верхнее: солнечные лучи струятся в комнаты из проемов в крыше. Однако такой вариант возможен только для одноэтажных строений.
  • Боковое: потоки попадают в помещения через проемы в стенах здания, то есть через окна. Это самый распространенный способ осветить комнаты.
  • Комбинированное: лучи падают и сверху, и сбоку. Оптимальный вариант освещения, но реализуемый только в одноэтажных зданиях или на верхних этажах многоэтажных строений.

Уровень естественного освещения может существенно меняться даже в течение светового дня. Идеально, если в окна в комнате расположены на двух противоположных стенах. В этом случае есть шанс уловить побольше солнечных лучей, даже если вмешиваются внешние факторы.

Верхнее естественное освещение комнаты

Вариант комбинированного естественного освещения в квартире

Боковое естественное освещение через мансардное окно

Вариант бокового естественного освещения через длинные узкие окна

Важно! Если перед домом расположены деревья или высокие здания, солнечные лучи будут с трудом проникать в помещения. В таком случае проблему придется решать с помощью искусственного освещения.

Естественное освещение для комфортной жизни

Человеческое здоровье и настроение напрямую зависит от качества освещенности. Роль играет все: направление света, цветопередача, количество световых потоков. Поэтому профессионалы предусмотрели несколько правил, на которые которые опираются строители современных зданий. Основные требования:

  • Расстояние между окнами не должно превышать полутора метров.
  • Помещения необходимо проектировать так, чтобы во все комнаты попадали прямые солнечные лучи как минимум в течение 2,5 часов в сутки.
  • Оптимальный размер одного окна — 1/5 от площади комнаты.
  • Чем выше потолки в здании, тем выше от пола необходимо располагать окна.

Если в доме или квартире несколько комнат, как минимум 60% из них должны быть хорошо освещены. В зависимости от уровня естественного освещения необходимо продумать предназначение помещений. Чем больше посещаемость, тем больше должно быть света.

Естественное освещение в квартире

Преимущества естественного освещения перед искусственным

Вы уже знаете, что такое естественное освещение помещения. Осталось разобраться, в чем его преимущества перед искусственным. Вот несколько факторов:

  • Солнечные лучи не издают мерцания, поэтому не добавляют нагрузку на зрение.
  • Эффективное применение естественного света позволяет на 60-80% снизить затраты на электроэнергию.
  • Естественные потоки воспринимаются без искажения цвета.

Однако без искусственных источников света не обойтись, ведь солнечные лучи исчезают в вечернее время. Во второй половине дня в помещениях станет светлее благодаря правильно подобранным лампам.

Понятие и основные виды искусственного освещения

Искусственное освещение комнат достигается с помощью осветительных приборов: люстр, торшеров, ламп, бра и многих других. Чтобы создать в помещении комфортную атмосферу, специалисты тщательно планируют схему расположения элементов. Можно выделить три типа освещения:

  • Общее (верхнее, центральное): осветительные приборы располагают по периметру потолка. Искусственные лучи равномерно рассеиваются по всей комнате.
  • Местное (зональное, рабочее): дополнительные источники света располагают в тех зонах, где нужна усиленная подсветка. Например, у кухонного или рабочего стола.
  • Декоративное: светом подчеркивают предметы интерьера с целью представить их в более выгодной позиции.

Обычно в жилых помещениях организовывают комбинированное освещение — совокупность общего и местного. Такая схема позволяет сконцентрировать световые потоки во всех уголках комнаты.

Потолочное искусственное освещение

Локальное искусственное освещение настенными светильниками

Комбинированное искусственное освещение в комнате

Креативное искусственное освещение в комнате

Что называется совмещенным освещением

Многим интересно, как называется комбинация естественного и искусственного освещения. Она носит название “совмещенное освещение”.

Система подразумевает, что недостаток естественного будет восполнен искусственным. Такая схема необходима в широких многоэтажных и одноэтажных зданиях, в окна которых попадает мало солнечных лучей.

Декоративный свет в интерьере

Декоративное освещение не несет особой функциональной нагрузки, зато создает в комнате неповторимую атмосферу. Варианты для реализации идеи:

  • Ретро-лампы — световые приборы, оформленные в оригинальные стеклянные колбы с дизайном “под старину”. Их можно разместить как на потолке, так и на стенах. Особенно эффектно смотрится подвесной “букет” из таких ламп.
  • Светодиодная лента — декоративный световой элемент, который часто используется для контурной подсветки предметов и конструкций. Можно выбрать определенный оттенок свечения и отрегулировать яркость потоков.
  • Гирлянды — конструкция из маленьких лампочек, излучающих однотонные или цветные потоки. Многие привыкли использовать такие приборы в качестве праздничных украшений, однако они вполне могут занять постоянное место в интерьере.
  • Неоновые элементы — световые композиции из изогнутых трубок, наполненных газом. Такой декор потрясающе смотрится на фоне темной отделки стен.
  • Светодиодная подсветка для зеркал и картин — специальные светильники, которые крепятся непосредственно на элементы декора. Они излучают мягкие потоки, за счет чего аксессуары выделяются в интерьере.

Если грамотно продумать композицию, креативное освещение добавит в интерьер комнат изюминку. Можно воплотить в реальность идеи создания световых элементов своими руками. Получится неповторимый дизайн, которого точно не будет больше ни у кого.

Креативное искусственное освещение гирляндой

Креативное искусственное освещение ретро лампами

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: