Ультрафиолетовые светодиоды для стерилизации: принцип работы, характеристики и применение

Ультрафиолетовые UVC-светодиоды для дезинфекции

В свете событий, связанных с эпидемией коронавируса, проблема дезинфекции стала гораздо более актуальной. Соответственно и в индустрии производства источников излучения усиленно развиваются направления, которые ранее не были столь востребованы. Представляем ультрафиолетовые светодиоды с кварцевым компаундом, излучающие в коротковолновом UV-C-спектре, который, будучи частью солнечного спектра, обычно задерживается атмосферой Земли. Данное излучение используется для обеззараживания применительно к вирусам, бактериям, грибкам и клещам путём разрушения нуклеиновых кислот и нарушения цепочек ДНК/РНК у микробов. Облучение с использованием данного спектра частот применяется для дезинфекции различных поверхностей, воды, воздуха и пищи во всех сферах деятельности человека.

В представленной линейке UVC-светодиодов есть модели как со стандартным углом излучения 120°, так и с узкими углами 35…60°. У кварцевого компаунда, используемого в данных светодиодах, есть ряд безусловных преимуществ по сравнению с обычным силиконом: совместимый индекс преломления позволяет снизить потери световой энергии на выходе. Лучшая устойчивость к УФ-излучению, повышенной температуре и механическим воздействиям позволяет избежать пожелтения и помутнения, а также достичь надёжности и эффективности. Специальный рецепт кварцевого компаунда снижает гигроскопичность материала (способность поглощать водяные пары из воздуха).

Производитель Наименование Размеры корпуса [мм] Мощность [Вт] Диапазон длины волны [нм] Диапазон напряжения [В] Номинальный ток [мА] Максимальный ток [мА] Излучаемая мощность [мВт] Угол излучения половинной мощности [град.] Тепловое R [°C/Вт] Материал компаунда
ProlightOpto PB2D-UCLA-TC 3,5 х 3,5 х 1,05 0,2 265. 280 5. 8 20 30 3,5 120 15 кварц
ProlightOpto PB2D-UJLA-TC 3,5 х 3,5 х 3,15 0,2 265. 280 5. 8 20 30 3,2 35 15 кварц
ParaLight LT3535UVC-K1PC 3,5 х 3,5 х 1,6 0,5 275±* 6±* 40 40 4 120 15 кварц
ParaLight LT3535UVC-KPC 3,5 х 3,5 х 1,6 0,5 275±* 6,5±* 50 80 5,8 120 45 кварц
ParaLight LT3535UVC-K1PCA1 3,5 х 3,5 х 1,6 0,5 275±* 6±* 80 80 8 120 15 кварц
ParaLight LT3535UVC-KPCM 3,75 х 3,75 х 1,05 0,5 275±* 6±* 100 100 15 120 15 кварц
ParaLight LT3535UVC-KCCM 3,75 х 3,75 х 2,85 0,5 275±* 6±* 100 100 20 60 15 кварц
ProlightOpto PBLB-1CQA-TCL 3,0 х 3,0 х 0,9 0,5 265…280 + 400…410 5. 8 / 3. 3,4 20 / 20 70 / 40 2,5 + 13 120 15 кварц
ParaLight LT3535UVC-KPCA1 3,5 х 3,5 х 1,6 1 275±* 6±* 100 150 11,6 120 45 кварц
ProlightOpto PB2D-1CLA-TC 3,5 х 3,5 х 1,05 1 265…280 5. 8 100 150 10,5 120 15 кварц
ProlightOpto PB2D-1JLA-TC 3,5 х 3,5 х 3,15 1 265…280 5. 8 100 150 10 35 15 кварц
ParaLight LT5050UVC-XPC 5,0 х 5,0 х 1,7 2,5 275±* 7±* 350 350 40 120 20 кварц
ProlightOpto PBLA-3CLA-TC 5,0 х 5,0 х 1,1 3 265. 280 15. 25 100 150 32 120 6 кварц
ProlightOpto PBLA-3KLA-TC 5,0 х 5,0 х 3,7 3 265. 280 15. 25 100 150 30 60 6 кварц
ParaLight LT5050UVC-XPCA1 5,0 х 5,0 х 1,7 4,5 275±* 7,5±* 600 600 80 120 15 кварц
ProlightOpto PBSD-12KLA-TC 7,0 х 7,0 х 4,6 15 265..280 15…24 400 600 100 60 2 кварц
ProlightOpto PBSD-12JLA-TC 7,0 х 7,0 х 5,8 15 265..280 15…25 400 600 100 48 2 кварц

– Знак «*» означает, что границы диапазона подлежат уточнению.
– Группа компаний «Симметрон» является официальным дистрибьютором тайваньских производителей светодиодов ProLight Opto и Paralight на территории РФ и стран ЕАЭС.

По результатам известных исследований облучение в диапазоне длины волны 245…280 нм является наиболее эффективным для инактивации большинства микробов, см. ниже руководство ГСЭН РФ Р 3.5.1904-04.

Хотим поделиться с вами ссылкой на веб-ресурс Международной Ассоциации по ультрафиолету https://iuva.org. Здесь можно следить за публикацией последних данных по УФ-дезинфекции и влиянию ультрафиолета на человека, которые консолидируются из различных официальных источников (CDC, ВОЗ и пр.). Для удобства приведём некоторые сведения с данного ресурса, которые могут оказаться полезными для разработки дезинфицирующих UVC-облучателей.

Технические спецификации конечного изделия должны содержать ключевой параметр – интенсивность излучения на заданной дистанции от передней части облучателя (например, 10 мВт/см 2 на расстоянии 2 см). При облучении поверхностей UVC-спектром 254 нм для инактивации 99,9% вирусов семейства SARS, к которому принадлежит вирус COVID-19 SARS-CoV-2, лабораторно выявленная доза излучения 10…40 мДж/см 2 , т.е. 10…40 мВт·с/см 2 . Таким образом, если у нас, к примеру, имеется облучатель с интенсивностью излучения 10 мВт/см 2 с расстояния 2 см, то для инактивации вирусов потребуется время 1…4 с. Тут стоит оговориться, что UVC-облучение эффективно обеззараживает те участки поверхности, на которые оно попадает. Однако в реальных условиях микроскопические вирусы зачастую затенены или скрыты в микротрещинах и неровностях поверхностей, что снижает эффект UVC-дезинфекции, особенно в случае с тканью. С целью компенсации этого явления исследователи рекомендуют применять к поверхностям дозы UVC-облучения 1000…3000 мДж/см 2 = 1000…3000 мВт с/см 2 . На эту тему продолжаются активные исследования, последние сводки можно отслеживать на вышеупомянутом веб-ресурсе. Для применений, где требуется достичь высокой интенсивности облучения на относительно небольшой площади обрабатываемой поверхности, при этом облучатель находится на расстоянии, превышающем габариты обрабатываемой площади, рекомендуем обратить внимание на UVC-светодиоды с узкими углами излучения 35…60°.

Относительно недавно появились данные о перспективах дезинфекции облучением в суб-диапазоне спектра 200…225 нм, которое задерживается ороговевшими клетками на поверхности человеческого тела и вероятно не проникает глубоко в ткани человека, не нанося вред живым клеткам. Однако, несмотря на перспективы дезинфекции спектром 200…225 нм помещений в присутствии людей, пока безопасность прямого воздействия данного облучения на людей является вопросом спорным и до конца не изученным. На сегодняшний день официальные источники указывают на необходимость дальнейших исследований для того, чтобы сделать заключение о влиянии спектра излучения 200…225 нм на здоровье людей (например, определение порога предельных значений, неожиданные фотохимические реакции в косметике или одежде и прочее). К тому же в спектре 200…225 нм УФ-излучение производит из воздуха токсичный для людей газ озон (устойчивая генерация озона происходит при облучении воздуха длиной волны менее 242 нм). Подробности см. в документе по ссылке.

Расширенную информацию по необходимым дозам облучения в зависимости от вида микроба, эффективному спектру, а также методические указания по расчётам и разработке дезинфицирующих UVC-облучателей можно найти в следующих документах:

Читайте также:  Светильники потолочные: что это такое, какие бывают типы, как выбрать

Компания Ledil предлагает вторичную линзу VIOLET-12X1-S из силикона, пропускающего 70…73% излучаемой мощности УФ-светодиодов. Вторичная линза фокусирует излучение на угол 20°, а также надёжно накрывает и защищает светодиоды со степенью IP-67. Для использования в комплекте с данной линзой наша команда спроектировала UVC-модуль с возможностью вариативной установки светодиодов и разъёмов.

Описание и характеристики данного UVC-модуля, а также других наших модульных решений по данной теме можно найти в файле по ссылке: UVC-модули

Следует принять во внимание, что во избежание нежелательных последствий необходимо избегать прямого воздействия UVC-излучения на открытые участки тела человека и домашних питомцев: Общий обзор по применению UV-светодиодов

Что такое ультрафиолетовые светодиоды?

Ультрафиолетовый свет находится вне диапазона видимого света. Ультрафиолетовые светодиоды излучают именно такой, частотой 100-400 нм. Это излучение необходимо для проведения стерилизации, производстве продуктов питания или косметики, для проведения судебно-медицинских экспертиз и других важных сферах современной жизни.

Изготавливаются ультрафиолетовые светодиоды присадкой на полупроводниковый материал. Обычно для этого выбирается арсенид галлия, который может продуцировать инфракрасный, красный свет. Подробнее об устройстве такого типа светодиодов написано ниже. Также по данной тематике приведено два видеоролика и научно-популярная статья, которая поможет глубже вникнуть в материал.

Немного истории

Впервые идею изготовления мощных светодиодов в спектре ультрафиолетовых лучей реализовали инженеры компании Seoul Optodevice Co. LTD, которая является дочкой китайского концерна Seoul Semiconductor. Первый коммерческий, то есть масштабный, выпуск состоялся еще в 2007 году, но за счет малой мощности и высокой цены устройство не нашло свою нишу.

Позднее инженеры доработали все нюансы и выпустили в 2011 году новое поколение ультрафиолетовых светодиодов, которые имели мощность в 2 раза больше и ресурс почти в 4 раза больше исходника. Такой значительный рывок вперед стал возможным только после изобретения способа корпусирования кристаллов в светодиодах и значительного уменьшения теплового сопротивления между самим кристаллом и корпусом, в который он заключен.

Ультрафиолетовые светодиоды это устройства, которые только начинают заменять привычные источники УФ излучения в диапазоне от 100 до 400 нм, такие как газоразрядные лампы.

Но процесс до сих пор движется вперед, снижаются тепловые нагрузки, еще более увеличивается потенциал, что позволит в скором времени заменить ртутные лампы более современными аналогами.

Принцип действия

Ультрафиолетовое излучение — не воспринимаемая человеческим глазом коротковолновая часть солнечного спектра, занимающая диапазон между видимым излучением и рентгеновским, но ниже предельной границы. Несмотря на схожий со всеми остальными группами светодиодов принцип работы, здесь за излучение отвечают специальные присадки, применяемые при изготовлении:

  • AlxGa1-xAs алюминия галлия арсенид;
  • GaN нитрид галлия – бинарное соединение галлия и азота;
  • AlN алюмонитрид;
  • InN индия – бинарное соединение металла индия и азота.

УФ светодиоды настроены на ближнюю область ультрафиолетового диапазона и излучают в диапазоне длин волн 100-400 нм (фиолетовый цвет). Британский производитель УФ-систем, компания GEW (EC) Limited много лет активно занимается исследованием потенциала УФ-светодиодов.

Но при этом серьезно настроен на дальнейшее развитие технологии с использованием обычных дуговых ламп для печати этикетки, декорирования металла и других промышленных назначений. Для того, чтобы правильно понять возможности и потенциальные заблуждения по поводу светодиодов, требуется подробное исследование светодиодной технологии.

Малькольм Рэй, директор компании GEW разъясняет: «Процент электрической энергии, преобразованной в УФ-излучение у светодиодов очень схоже с этим показателем у дуговых ламп – от 25 до 30%. Общие требования мощности для светодиодной системы также подобны данным обычных систем – около 100 Вт/см».

Это может стать сюрпризом, учитывая что именно энергосбережение, считается отличительной особенностью светодиодов. Светодиоды действительно существенно более эффективны по сравнению с УФ-системами старого поколения, но, если провести аналогию с современными системами УФ-отверждения, различия в работе минимальны», говорит Рэй.

Реальное преимущество в использовании энергии в светодиодных системах заключается в том, что они мгновенно включаются и выключаются, не требуя циклов разогрева и режима ожидания, характерных для дуговых ламп. Это значительно снижает потребление непроизводственной энергии и может сделать светодиоды привлекательной альтернативой с точки зрения энергосбережения для производств с малыми тиражами и режимами ожидания с высоким расходом энергии».

Второй важный фактор – это эффективность затрат во время срока службы. Светодиоды потенциально работают больше 20 000 часов, что примерно в 7-10 раз дольше, чем у дуговой лампы с ее 2-3 тысячами часов.

Технические характеристики

Расчетное время эксплуатации составляет 50000 часов, но это показатель идеальных лабораторных условий. В реальности лампа служит гораздо меньше – до 30000 часов. потребляемый ток –20 мА (для маломощных), 350-700 мА (мощных);

  • интенсивность потока – 500-4500 мКд;
  • угол излучения – 90-120°;
  • максимальная температура нагрева 60°С;
  • температура эксплуатации -20/+100°С.

Работа при стандартном токе дает возможность использовать приборы с УФ излучением от обычных блоков питания 220V.

Требования к конструкции

Маломощные диоды могут быть изготовлены в классическом корпусе индикаторных led ламп, но при этом должна быть полностью продуманная система охлаждения. Это могут быть вибрирующие мембраны или встроенные вентиляторы. Такое значение системе охлаждения уделяется по той причине, что только 25% получаемой при питании энергии УФ переводит в свет, остальные 75% продуцируются в тепло.

Повышение рабочей температуры любого светодиода приводит к мгновенному его износу. Ультрафиолетовый по этим параметрам также не является исключением. Корпус, равно как и крепежная основа должны быть изготовлены из прозрачного герметизирующего и заливочного эпоксидного компаунда или прочного пластика. Металл неприменим, так как сильно снижает КПД лампы.

Сфера применения

Область применения UV конструкций аналогична той же, которую раньше занимали ультрафиолетовые лампы. Но при этом светодиоды более компактные по размеру, выдают больший диапазон излучения, затрачивают меньше энергии и рассчитаны на длительный срок работы.

  • Медицина и косметология. В стоматологии UV применяют для работы с пломбами и обеззараживания инструментов. В терапии для физиопроцедур по восполнению недостатка витамина Д, при лечении гепатита и снижения уровня билирубина в крови новорожденных детей. В косметологии для соляриев, отдельных омолаживающих процедур.
  • Фармакология. Для производства ряда лекарственных препаратов.
  • Промышленность и производство. Для работы с фоточувствительными композитными составами, затвердевающими и полимеризующимися под воздействием таких лучей.
  • Криминалистика. Для проведения оперативных мероприятий, обнаружения следов крови, частиц, биологических жидкостей в процессе следствия.
  • Банковская сфера. С помощью УФ-лучей определяется подлинность купюр, считываются метки, наносимые для определенных целей.
  • Маникюрные процедуры. Все больше мастеров стараются купить ультрафиолетовые светодиоды в виде специальной лампы для сушки гелевых перманентных лаков (шеллак) и при наращивании ногтей гелевыми составами.
Читайте также:  Как повесить люстру: своими руками, на бетонный потолок, на планку, на крючок, без крюка

Это лишь самая малая часть областей, где могут использоваться такие уникальные источники света. Во многих странах ведутся клинические исследования и разработки по поводу влияния ультрафиолета на здоровье, на способность препятствовать онкологии, на потенциальные возможности таких лучей в сельском хозяйстве, промышленности и производстве. Такие источники появились сравнительно недавно, значит, совсем скоро нас ждут интересные открытия.

Преимущества светодиодных светильников в сравнении с традиционными ламповыми светильниками отражают данные, приведенные в таблице ниже. В ней приняты следующие обозначения: ЛН – лампы накаливания, КЛЛ – катодолюминесцентные лампы, СД – светодиоды, ИК – инфракрасное излучение, УФ – ультрафиолетовое излучение.

Безусловно, использование ультрафиолетовых светодиодов для отверждения и полимеризации пользуется наибольшим спросом. Всплеск такого спроса связан с относительно недавним прорывом в технологии, обеспечивающей плотность потока УФ излучения светодиодов на различных длинах волн.

Качественное освещение традиционными светильниками с лампами ДРЛ (дуговая ртутная лампа) и ДНаТ (дуговая натриевая трубчатая лампа) требует не только большого количества электроэнергии, но и значительных затрат на сервисное обслуживание. Преимущество светодиодов очевидно – они в три раза энергоэффективнее светильников на основе ламп ДРЛ и в два раза эффективнее натриевых ламп.

При проведении стоматологического лечения используется полимеризующийся фоточувствительный материал, который может принимать различную твердость при таких длинах волн, как 395 нм, 385 нм или 365 нм, которые являются частью УФ-спектра (315 -400 нм).

Другой важной областью применения ультрафиолетовых светодиодов, является область машинного зрения. Ультрафиолетовые детекторы в этом диапазоне используются для обнаружения подделок банкнот, и имеют преимущества при использовании в хорошо освещенном помещении, в котором использование ртутных ламп затруднено. В области спектра от 280 до 315 нм светодиоды используются в медицинской световой терапии, при проведении судебной экспертизы и при производстве лекарственных препаратов.

Помимо этих вариантов применения ультрафиолетовых светодиодов, существуют различные способы применения, основанные на полезных свойствах для здоровья, включая естественный синтез витамина D в организме человека при воздействию солнечных лучей.

Интересно, что, когда растения подвергаются воздействию со стороны ультрафиолетовых светодиодов на короткое время перед сбором урожая, содержание полифенолов повышается без ущерба для растительной массы. Это новый способ повышения привлекательности некоторых продуктов питания без использования химических веществ. Полифенолы также привлекают внимание ученых в связи с их предполагаемыми противораковымии и антимутагенными свойствами.

В нижней части ультрафиолетового спектра (100-280 нм), основными областями применения ультрафиолетовых светодиодов являются стерилизация воздуха и воды. Химические и биологические детекторы также работают в этой области спектра. В пределах рабочего диапазона в 250-275 нм ультрафиолетовые светодиоды могут обеспечивать стерилизацию воды и воздуха, а также разрушать ДНК и РНК микроорганизмов для предотвращения их размножения.

Особенности энергетического КПД

Энергетическая эффективность – это соотношение потребленной электрической мощности к мощности светового излучения. Ультрафиолетовые светодиоды, применяемые для светотехники, позволяют трансформировать энергию в соответствующее узкое световое излучение, когда кристаллы несут тепловые потери. Чтобы избежать этого, создаются специальные конструкции для придания параметрам светодиодов максимального срока эксплуатации.

Тепловой режим

В целях максимальной эффективности ультрафиолетовых светодиодов, которые четвертую часть трансформируют в свет, а остальные три – в тепло, при их дизайне необходимо учитывать конвекцию, теплопроводность, а также излучение.

Параметр конвекции

Учитывается корпус светильника. Необходимо обеспечение хороших контактов с воздушными потоками. В качестве отводов тепла возможно использование вибрирующих мембран или мини-вентиляторов.

Параметр излучения

Поверхность светового прибора, к которой закрепляют светодиод или его аналог – светодиодный модуль не должна быть из металлической основы, поскольку влияет на коэффициент излучения. При контакте с поверхностью должен образовываться максимальный спектральный коэффициент излучения.

Параметр теплопроводности

Для охлаждения используют отводы тепла на основе специальных конструкций корпуса. Указанные конструкции должны быть из материалов, обладающих небольшим тепловым сопротивлением. В силу вышесказанного светодиоды являются более гибкими и приспосабливаемыми к конкретным потребностям. «В промышленности, где универсальность и скорость все больше ценятся пользователями, светодиоды являются современным решением для передовых и узконаправленных применений, а кроме того, решением на будущее для использования во всех случаях, где производительность, мощность и стоимость будут более конкурентными по сравнению с теми же параметрами в системах с дуговыми лампами», говорит Рэй. «Мы в GEW полагаем, что несложные решения являются самыми лучшими.

Светодиоды являются самой простой и самой эффективной технологией для некоторых печатных применений, в особенности для струйной печати. Наши светодиодные решения для этого вида промышленности можно очень просто установить на флексографскую машину, но это не значит, что данная опция будет автоматически самой лучшей для каждого клиента».

Стоимость светодиодных красок и систем, вероятно, будет падать, а производительность увеличиваться. На сегодняшний день светодиоды – это более дорогая альтернатива, но, если текущие тенденции сохранятся, они станут привлекательным предложением в будущем. Учитывая, что производители этикеток не захотят дублировать краски на складе специальными, подходящими к светодиодным системам и не будут иметь желания осваивать новый процесс, потребность в энергоэффективных системах с использованием дуговых ламп будет продолжать расти.

Заключение

Более подробно о светодиодах содержится в статье Все о ультрафиолетовых светодиодах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Ультрафиолетовая дезинфекция помещений — выбор правильной УФ лампы.

Не секрет, что ультрафиолетовое излучение способно эффективно стерилизовать и дезинфицировать окружающую среду от вирусов и болезнетворных организмов.

Это в равной степени относится как к воздуху, так и к воде.

Правда делает это не весь ультрафиолет, а только лучи с определенной длиной волны.

Например, те же самые УФ лампы для сушки лака при маникюре в этом деле бесполезны, равно как и “проверялки” для денег.

Читайте также:  Монтаж точечных светильников в гипсокартон (своими руками)

Зависит все от того, какой тип ультрафиолета излучает лампочка.

Ультрафиолет подразделяют на три вида:

    UV-A – длинноволновый УФ (мягкий)

Он имеет длину волны от 315нм до 400нм. Такой применяют в детекторах банкнот, лампах для маникюра или на дискотеках.

    UV-B – средневолновой

У него длина – 280нм-315нм. От таких лучиков мы получаем естественный солнечный или искусственный загар в специальных СПА.

И UV-A и UB-B в разных долях присутствуют в естественной среде благодаря нашему солнышку.

    UV-C – коротковолновый УФ (жесткий)

А вот это как раз то, что нам и нужно. Здесь длины волн 100-280нм. Именно они являются губительными для бактерий.

Максимальная эффективность и обеззараживание достигается у лучей 253,7-257,5нм.

Такой спектр имеют ртутно-кварцевые лампы, работающие на принципе газового разряда.

В естественной среде такой ультрафиолет практически полностью поглощается озоновым слоем земли и до нас не доходит.

Поэтому его вырабатывают искусственно при помощи лампочек, содержащих ртуть или собранных на специальных светодиодах UV-C.

Как это все работает? Дело в том, что у вируса отсутствует защитная клеточная стенка или мембрана.

Поэтому короткие волны УФ спокойно проникают в его нутро и воздействуют непосредственно на ДНК и РНК, разрушая их. А ведь именно удвоение молекулы нуклеиновой кислоты отвечает за размножение микроорганизма.

Даже если УФ лучи не убьют инфекцию (малая интенсивность или длительность облучения), они все равно останавливают ее размножение. А если ты не можешь размножаться, то уже не представляешь такой опасности для других здоровых клеток.

Что это значит? Есть несколько видов дезинфекции помещений, в том числе химическая.

Так вот, при химической обработке есть некоторая вероятность, что отдельные виды вирусов и микроорганизмов в последствии могут видоизмениться, и выработать резистивность к тем или иным растворам или их концентрации.

А вот от УФ никакой защиты нет. Как бы зараза не видоизменялась, непосредственное воздействие жесткого ультрафиолета на ее нуклеиновые кислоты в конечном итоге заставят ее сдохнуть.

Такого излучения они боятся, как вампиры солнца.

Каким бы новым и неизученным вирус не был (Covid-19, SARS и т.п.) он все равно обладает ДНК, РНК, а значит коротковолновый УФ проникнет в его нутро и оттуда погубит.

Согласно исследованиям для эффективности облучения в 99%, требуется доза около 1000 мкВтсек/см2.

Такая интенсивность убьет все вирусы содержащие РНК, ДНК с одной цепочкой (коронавирус), и с большей вероятностью в 90% РНК, ДНК с двойной цепочкой.

При этом не забывайте, что коротковолновое УФ излучение вредно не только для вирусов, но и для человека. Такой ультрафиолет может повредить глаза, навсегда испортив зрение, либо нарушить уже ваше ДНК, если на теле есть открытые ранки и они попали под такой свет.

Фактически, бесконтрольное облучение такими волнами может стать причиной развития рака.

В первую очередь на эффект дезинфекции влияет полученная доза. Здесь можно привести аналоги с радиацией.

Чем больше будет интенсивность источника облучения, тем большую дозу за меньший промежуток времени получат бактерии и микробы.

Обратите внимание, что в УФ лампочках указывается общая мощность, в которую входит как короткий ультрафиолет, так и другие спектры излучения (тепло и просто красивый синий свет).

Так например, у УФ бактерицидной лампы в 10Вт, мощность убийственных лучей может составлять всего 2,7Вт. Именно на этот параметр и следует обращать внимание при выборе.

Что еще важно знать рядовому пользователю? УФ лампочки бывают озонообразующими и безозоновые. Зависит это от состава стекла.

Если лампа выполнена из увиолевого материала, то оно задерживает те лучи, которые приводят к образованию озона (185нм). Если это простое стекло, то запах озона вы будете ощущать в полной мере.

Казалось бы, а чего тут плохого? Запах озона это же приятно и хорошо. Вспомните чистый воздух после грозы.

Все дело в том, что согласно ГОСТ 12.1.007-76 и ГОСТ 12.1.005-88 озон является веществом первого класса опасности!

Его предельно допустимая концентрация в воздухе рабочей зоны должна быть не более 0,1мг/м3. Если УФ лампу с озонообразующими свойствами долго держать включенной в замкнутом помещении, его концентрация превысит данные значения.

И чем чаще вы будете находиться в такой среде и дышать подобным воздухом, тем больше риск возникновения и развития у вас онкологических заболеваний.

Вместо лечения вы у себя дома заведете лампу убийцу.

Особенно опасайтесь разрекламированных китайских УФ светильников. Вот очень наглядный отзыв после использования такового.

Наш нюх способен различать озон даже в малейшей концентрации всего 0,01мг/м3. Как вы думаете, случайно ли была выработана такая способность у человека?

Поэтому, если вы почувствовали запах озона после работы бактерицидной лампы, сразу же проветривайте помещение. Не рискуйте и не дышите таким воздухом.

Еще очень многие путают бактерицидные и кварцевые лампы, считая их одинаково полезными в деле дезинфекции и стерилизации.

Помните мы говорили про длину волн УФ лучей? У бактерицидных она как раз такая, как нужно – 253,7нм.

А кварцевые лампы излучают другой ультрафиолет – 300-400нм. Фактически это UV-A лучи, которые немножко прогревают облучаемые участки и вызывают несколько другой лечебный эффект.

Воздух в помещении вы ими точно не продезинфицируете.

Если у вас нет заводской УФ лампочки, многие ютуб блогеры в последнее время начали массово советовать изготавливать подобные изделия из обычных ламп ДРЛ. В чем заключаются их рекомендации?

Все довольно просто. Берете большую, мощную лампу ДРЛ 250-400Вт, разбиваете ее внешний плафон, оставляя в целости внутренности и включаете в помещении в таком “голом” виде.

Это уже будет не просто УФ излучатель, а фактически пушка с лучами смерти. Причем заразу от нее вы можете подцепить еще на стадии изготовления, даже не включая лампу в розетку.

При ее разбитии образуется крайне ядовитое облако. Поэтому не додумайтесь разбивать стеклянную колбу у себя в доме.

Помимо ртути в ядовитых парах содержится сурьма и марганец. Колба как раз-таки от всего этого и защищает, плюс задерживает коротковолновый ультрафиолет.

Читайте также:  Светильник из эпоксидной смолы: особенности изготовления своими руками

При ее разрушении вы выпускаете все это дело наружу. Даже если вы выйдете из комнаты и будете запускать лампу дистанционно, то ее работа без защитного стекла сгенерирует большое количество озона.

Регулярно дыша таким воздухом, вы сожгёте себе легкие. Проблема здесь не в том, что это не эффективно.

Наоборот, исследования ученых как раз таки выявили, что именно совместное сочетание лучей 185нм и 254нм дает наилучший бактерицидный эффект.

Проблема в озоне. Вы никак не сможете проконтролировать и замерить его концентрацию. А руководствоваться только на свой нюх и проветривание, я вам не советую.

Да, безусловно, где-то в нежилых помещениях такая самоделка и может быть полезна. Например, в погребах.

Включил на короткий промежуток времени, и эта “пушка” убьет всю плесень и грибки. Но в жилых помещениях используйте только заводские изделия.

Если же вам неймется сделать самодельный уф стерилизатор и дезинфектор, то используйте для этого лампу меньшей мощности – ДРЛ 125. В ней стоит аналог лампочки ДРТ-125, которая обладает потоком UV-C от общей мощности не более 11%.

В специализированных УФ лампах это значение доходит до 40%. Поэтому бактерицидная лампа низкого давления в 30Вт (самый распространенный тип), будет примерно сопоставима разбитой лампе высокого давления ДРЛ-125.

Но ни в коем случае не используйте их в открытом виде, а прячьте в корпус со встроенным вентилятором. Например, вот так, как сделал автор этого видео.

Однако нужно откровенно признать, что открытые бактерицидные лампы частенько в несколько раз эффективнее закрытых. Объясняется это очень просто.

Число бактерий и вирусов, осевших на стенках и предметах мебели, в 100 раз превосходит их же число, свободно летающих в воздухе.

И закрытым источником облучения, который всего лишь прогоняет через себя окружающий воздух, вы не сможете до них добраться.

Еще многие путают понятия озонатор и ионизатор. Это совершенно разные вещи.

Ярким представителем ионизатора является люстра Чижевского.

Она насыщает окружающий воздух отрицательно заряженными частицами – ионами. Никакого разрушения болезнетворных бактерий это не вызывает.

В любом помещении как бы вы хорошо его не убирали, все равно будет присутствовать пыль. При включении ионизатора микрочастицы пыли приобретают отрицательный заряд.

Все остальное в комнате, имея положительный или нейтральный заряд, становится пылесборником. То есть, все предметы мебели, стены и потолок забирают из воздуха всю пыль на себя.

Так что, если вы решили использовать люстру Чижевского, заранее приготовьтесь к более частой уборке у себя дома.

Так какие же лампы можно и нужно использовать? Например, такие как БУВ, ДРБ-8-1 (европейский аналог – Philips TUV 8W) или ПРК. Первые получили наибольшее распространение.

Вторые, ртутно-кварцевые (ПРК) кушают слишком много электроэнергии.

Цифра, идущая после названия, обычно означает мощность в ваттах: БУВ-10, БУВ-30. Среди трубок Т8 можно еще обратить внимание на модели LTC 30T8.

Все они являются бактерицидными газоразрядными ртутными лампами низкого давления. Внешне, это стеклянная трубка с обоих концов которой запаяны электроды из вольфрамовой спирали.

Спираль покрыта карбонатом бария и стронция. В колбу закачан аргон и немного ртути.

После подключения лампочки в сеть в парах ртутит происходит разряд, который и сопровождается ультрафиолетовым излучением. Увиолевое стекло пропускает только те лучи, которые не способствуют образованию озона.

Интенсивность бактерицидного потока измеряется в бактах (б). Например, у ламп БУВ-30 интенсивность равна 2,95 бакт.

Такие лампочки встраивают как в стационарные настенные (НБО) и потолочные (ПБО) облучатели, так и в передвижные. Последние еще называют маячного типа – МБО.

Для увеличения обрабатываемой площади одним светильником в них встраивают не одну, а сразу несколько ламп. Стандартные модели дезинфекторов рассчитаны на комнаты до 30м2.

Познакомится более подробно с современными УФ бактерицидными аппаратами можно по нижеприведенным вкладкам. Нажмите на интересующую вас модель и узнаете ее плюсы и минусы.

Ультрафиолетовые светодиоды для борьбы с вирусами

Пандемия коронавируса COVID-19 уже успела оказать большое влияние на светотехническую отрасль. Светильники для кафе, ресторанов и мест проведения массовых мероприятий больше не в центре внимания специалистов. Основным направлением, куда прилагаются усилия ученых и инженеров, стали светодиоды, дающие излучение в ультрафиолетовом диапазоне.

Ультрафиолетовым (УФ) называют излучение с длиной волны от 10 до 400 нм, т. е. короче, чем у видимого света. Вместе УФ, видимое и инфракрасное, обозначаются единым понятием «световое излучение». Иногда говорят о свете в широком понимании этого слова. По конструкции источники УФ-излучения аналогичны источникам видимого света.

Спектр УФ-излучения делится на четыре диапазона. UVA — от 315 до 400 нм, UVB — от 280 до 315 нм, UVC — от 100 до 280 нм и экстремальный от 10 до 100 нм. Лучи UVA проходят через многие современные марки оконных стекол. Практическое применение — шоу-бизнес (свечение одежды в темноте), косметология (затвердевание лака, а также геля для наращивания ногтей), криминалистика (выявление поддельных купюр) и т. п. Диапазон UVB отвечает за загар; лампы, излучающие в нем, используются в соляриях. Излучение данного диапазона не проходит через любые марки оконных стекол. В обычных условиях лучи UVC не достигают поверхности Земли, задерживаясь в атмосфере. Частично излучение этого спектра можно встретить на вершинах гор.

Кроме этого, периодически над теми или иными участками земного шара образуются так называемые «озоновые дыры», пропускающие UVC. Бесконтрольное облучение UVC-лучами в больших дозах очень вредно для здоровья человека. Но, как это часто бывает, яд и лекарство представляют собой одно и то же, разница только в дозировке.

Излучение в диапазоне от 205 до 315 нм способно уничтожать бактерии и вирусы. Принцип борьбы заключается в разрушении ДНК болезнетворных организмов. Причем, как показали научные исследования, наибольшей эффективности такая борьба достигает при длине волны 265 нм.

На момент написания статьи в научном мире сложилось мнение, что ДНК нового вируса также разрушается ультрафиолетом. Каких-либо особенностей, отличающих в этом плане COVID-19 от других вирусов, пока не установлено.
Применение кварцевых и бактерицидных ламп для обеззараживания воздуха и поверхностей помещений в России регламентируется «Методическими указаниями», утвержденными Минздравом 28 февраля 1995 г. Прямого упоминания УФ-светодиодов в них нет. Тем не менее некоторые типы УФ-светодиодов могут соответствовать данному в «Методических указаниях» определению: «Электрические источники излучения, спектр которых содержит излучение диапазона длин волн 205—315 нм, предназначенные для целей обеззараживания, называют бактерицидными лампами». Теоретически это должно способствовать «легализации» УФ-светодиодов до принятия новой нормативной базы.

Читайте также:  6 оригинальных бра своими руками (из дерева, бумаги, в стиле лофт)

Текущая ситуация

Лампы, используемые сейчас для борьбы с инфекциями, делятся на кварцевые и бактерицидные. Принцип их работы основан на плазменном разряде в парах ртути.

Кварцевая лампа — это ртутная лампа высокого давления. По конструкции она, как правило, аналогична лампам ДРЛ, до сих пор кое-где используемым для уличного освещения, но не имеет люминофора. Но бывают и кварцевые лампы, по форме похожие на люминесцентные. Колба выполнена из кварцевого стекла, откуда и название лампы. В спектре кварцевой лампы присутствует составляющая с длиной волны 254 нм, которая разрушает ДНК бактерий и вирусов. Также есть излучение с длиной волны 185 нм, под действием которого кислород воздуха преобразуется в озон. В строго дозированных количествах озон также способен уничтожать болезнетворные микроорганизмы. Но именно выработка озона стала причиной, почему сейчас кварцевые лампы применяются только для проведения медицинских процедур в индивидуальном порядке. Желательно под присмотром персонала с медицинским образованием. Всемирная организация здравоохранения не рекомендует использовать кварцевые лампы для борьбы с коронавирусом из-за негативного воздействия составляющей в 185 нм на кожу человека.

Бактерицидная лампа по конструкции аналогична люминесцентной лампе, но без люминофора, а колба выполнена из специального сорта стекла, пропускающего излучение с длиной волны 254 нм и задерживающего составляющую 185 нм. С такими лампами могут работать люди, не имеющие медицинского образования, например, сотрудники клининговых компаний. Именно бактерицидные лампы сейчас широко используются для обеззараживания. Как правило, обеззараживание производится в помещении, где в данный момент нет людей. Но при соблюдении определенных условий и установке лампы специалистом возможно ограниченное применение бактерицидных ламп и в помещениях с людьми.

Конструкция пускорегулирующей аппаратуры для кварцевых и бактерицидных ламп полностью идентична конструкции таких устройств для ламп ДРЛ и люминесцентных соответственно.

Преимущества светодиодов

Замена разрядных ламп светодиодами в установках для обеззараживания может дать следующие основные преимущества:

  • благодаря малым размерам светодиодов можно более точно сфокусировать излучение на обеззараживаемый объект;
  • регулировка мощности излучения в широких пределах (диммирование);
  • возможность создания источника с наиболее эффективной длиной волны 265 нм; высокая механическая прочность, значительное уменьшение массы установки;
  • отсутствие ртути.

Проще говоря, используя светодиоды, мы получим компактное обеззараживающее устройство, которое будет иметь меньше ограничений в использовании по сравнению с применяемыми сейчас установками на основе бактерицидных ламп. В частности, возможность точной фокусировки, а также регулировка мощности в широких пределах позволят использовать обеззараживатель в помещениях, где постоянно находятся люди, без ущерба для их здоровья.

Обеззараживание медицинского инструмента с помощью бактерицидной лампы

Техническая реализация

Чем короче длина волны, тем сложнее производство светодиодов. Серийное производство UVC-светодиодов для широкого применения началось только во второй половине 2010-х годов. Изначально их разрабатывали в рамках международного проекта по обеспечению качественной питьевой водой беднейшие страны Африки. Компактные установки на светодиодах, обеззараживающие воду, могут питаться от аккумулятора, индивидуального ветряка или напрямую от небольшой солнечной батареи, когда бактерицидным лампам требуется питание от сети или инвертора. Теперь же эти разработки пытаются использовать для обеззараживания воздуха и поверхностей в помещениях.

Для UVC-светодиодов используются полупроводники с увеличенной шириной запрещенной зоны. На момент написания статьи наиболее распространенным материалом для таких светодиодов был нитрид галлия с добавлением алюминия (AlGaN). Например, светодиоды на его основе выпускает компания California Eastern Lab (CEL). Преимуществом AlGaN является возможность использования для производства источников света уже хорошо отработанных технологических процессов. Но этому материалу свойственны и недостатки. Для него характерен высокий уровень дефектов кристаллической решетки, что снижает КПД. Другая проблема — длина волны излучения 275 нм, что не совпадает с оптимальным значением.

Компания Seoul Viosys первой в мире провела испытания своих UVC-светодиодов на вирусе COVID-19. Согласно пресс-релизу компании, опубликованному 3 марта 2020 г., вирус был уничтожен с эффективностью 90 %.

В качестве примера приведем CL7003C2 — наиболее мощный UVC-светодиод из производимых CEL. Рабочий ток составляет 600 мА при прямом напряжении 5,2 В. При этом мощность излучения составляет 30 мВт. Т. е. в итоге получаем КПД порядка 1 %. В то же время у кварцевой лампы КПД составляет 10-15 %, а у бактерицидной — 35-50 %. При этом оптовая цена на светодиод составляет $109 за штуку.

О выпуске своего UVC-светодиода с мощностью излучения 30 мВт объявила и компания Everlight. Данные по рабочему току и прямому напряжению пока не опубликованы, но косвенно, по длине волны 280 нм можно предположить, что используется та же AlGaN технология. Также светодиоды на 275 нм выпускает компания Seoul Viosys, являющаяся дочерней структурой Seoul Semiconductor. Мощность излучения составляет до 50 мВт, КПД — около 1 %.

УФ-светодиод Everlight с защитным кварцевым стеклом

Более перспективным в качестве материала для UVС является нитрид алюминия (AlN). У него реже, чем в AlGaN, встречаются дефекты кристаллической структуры, что обуславливает более высокий КПД. Это направление развивает компания Klaran. Ее светодиод KL265-50U-SM-WD дает излучение мощностью 60 мВт со средней длиной волны 265 нм. КПД достигает 2 %. О ценах на данные светодиоды пока не сообщается.

Выводы

УФ-светодиоды диапазона UVC пока что уступают разрядным лампам по КПД и стоят значительно дороже. Они могут дать выигрыш при создании обеззараживающих установок, умещающихся в кармане. Но будет ли эффективен обеззараживатель, облучающий, скажем, только стол, на котором вы будете обедать в ресторане, а не все помещение? На этот вопрос смогут дать ответ только вирусологи, а никак не специалисты по светотехнике. Остается лишь надеяться, что всеобщий интерес к теме борьбы с вирусами вместе с запретом на использование ртути привлечет большие инвестиции в развитие УФ- светодиодов, сделав их конкурентоспособными относительно бактерицидных ламп по стоимости и КПД. Тогда светодиоды заменят разрядные лампы в крупногабаритных обеззараживающих установках, эффективность работы которых уже доказана.

Читайте также:  Светодиод 3528: параметры и полные характеристики, размеры

Источник: Алексей Васильев, журнал «Электротехнический рынок» № 2 2020

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Читайте также:  Светодиодная лента в интерьере: как украсить комнату, идеи использования

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Читайте также:  Виды точечных светильников: какие выбрать для натяжных потолков

Солнечные батареи для дома: схема оборудования, расчет стоимости комплекта

Глядя на океан энергии, льющейся с небес на землю, мы остаемся зависимыми от электросетей.

Если в городе поставка тока более-менее стабильна, то за его пределами жители регулярно становятся участниками «конца света».

Как обеспечить свой дом надежным источником электроэнергии и не лишить себя комфорта, невозможного без «направленного движения электронов»? Ответ достаточно прост в теории, но почти незнаком многим на практике.

Это солнечные батареи для частного дома они являются главным условием автономного существования.

Что представляют собой эти устройства, их виды, характеристики и эффективность применения мы рассмотрим в данной статье.

Виды солнечных батарей

Из школьного курса физики нам знаком фотоэлектрический эффект. Он возникает в полупроводниках под действием света. На этом принципе работают все солнечные батареи.

Не будем углубляться в теорию процесса, а отметим лишь самые важные практические моменты:

  • Существует три вида солнечных батарей: монокристаллические и поликристаллические и панели из аморфного кремния (гибкие).
  • Все они вырабатывают постоянный ток (напряжением 12 или 24 В).
  • Срок службы данных устройств превышает 20 лет.
  • Мощная батарея не может эффективно работать без дополнительного оборудования (контроллера, аккумулятора, инвертора).

Теперь пройдем подробно по каждому пункту. Монокристаллическая панель по сравнению с поликристаллической выдает более высокую мощность с единицы поверхности. При этом цена у нее существенно выше.

Производительность поликристаллической ячейки на 15-20% меньше, но зато при облачной погоде она снижается незначительно. У монокристалла, напротив, при рассеянном освещении резко уменьшается выработка электричества. Солнечная батарея из аморфного кремния дешевле поликристаллической, но срок ее службы в 2-3 раза меньше. Исходя из перечисленных фактов, выгоднее покупать поликристаллические панели.

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • PWM;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).

Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Сколько нужно солнечных батарей для дома и дачи?

Здесь все просто. Покупателю не нужно заниматься сложным расчетом мощности солнечной станции и подбирать для нее батареи. Эту работу уже проделали специалисты компаний, выпускающих и продающих данное оборудование.

Потребителю остается лишь выбрать из предложенного ряда готовый комплект, исходя из своих потребностей. В качестве примера рассмотрим несколько стандартных вариантов, которые представлены на сайтах продавцов (актуально на 2016 год).

Гелиостанция, построенная на одной панели мощностью 250 Ватт, рассчитана на энергоснабжение потребителей, перечисленных в таблице №1.

Ее ориентировочная цена складывается из стоимости устройств, указанных в таблице №2.

Солнечная станция мощностью 500 Ватт способна обеспечить электричеством набор бытовых приборов, указанный в таблице №3.

Ее ориентировочную стоимость (с разбивкой по видам и моделям оборудования) вы найдете в таблице №4.

Гелиостанция на 1000 Ватт способна питать током не только экономные светодиодные лампочки, телевизор, ноутбук и спутниковую антенну. Одновременно с ними она «потянет» микроволновку, водяной насос или мощную электроплиту (таблица №5).

Основа данной гелиостанции — 4 солнечные панели мощностью по 250 Ватт каждая. За весь комплект оборудования (без стоимости монтажа, соединительных муфт и кабеля) нужно заплатить сумму, указанную в таблице №6

Изучая представленные комплекты оборудования, нетрудно заметить, что стоимость инвертора сравнима с ценой солнечной батареи. Поэтому некоторые владельцы солнечных станций предпочитают обходиться без инверторного преобразователя. Они покупают для своего дома бытовые приборы, работающие от постоянного тока напряжением 12 Вольт. Помимо высокой цены инвертор при работе потребляет около 10% энергии, получаемой от солнечной батареи. Поэтому его исключение из цепочки оборудования дает неплохую экономию.

Особенности монтажа

Установка солнечных батарей – процесс технически несложный, но весьма ответственный. Площадь и вес мощных панелей достаточно большие, поэтому им требуется надежное крепление с помощью направляющих и специальных крепежных элементов. Кроме этого на крыше необходимо предусмотреть возможность легкого доступа к батареям для очистки от пыли и снега.

Читайте также:  Расположение светильников на натяжном потолке: схема, расстояние между ними

От величины угла, под которым солнечные лучи падают на фотоэлементы, напрямую зависит выработка энергии. Поэтому солнечные батареи не фиксируют в одном положении, а монтируют на поворотных устройствах.

Существует два основных позиции гелиопанелей: летняя и зимняя. Меняя угол наклона, от солнечной станции получают максимальный КПД.

Характерные отзывы

Их можно разделить на две группы: отзывы тех, кто уже пользуется данными устройствами и мнения всех, кто только изучает вопрос автономного энергоснабжения.

Большинство владельцев солнечных станций довольны своим выбором. Оснастив ими свой загородный дом, они отмечают надежность, всесезонность и эффективность гелиопанелей. Размышляющие о покупке, высказывают сомнения в экономической целесообразности, опасаясь долгого срока окупаемости оборудования.

Мы выскажем свои соображения по данной теме. Принимая в расчет стабильный рост стоимости электроэнергии, получаемой из внешних сетей, использование гелиостанции нельзя назвать убыточным. Если же речь идет о районах, где энергоснабжение полностью отсутствует или характеризуется частыми отключениями, то гелиостанция — безальтернативный вариант.

Самостоятельная сборка

Попробовать свои силы в сфере солнечной энергетики домашних умельцев побуждают два фактора: стремление снизить стоимость гелиопенелей и новизна данной работы.

Экономия, получаемая при самостоятельной сборке, впечатляет. Комплект «сделай сам», состоящий из фотоячеек и монтажной токопроводящей ленты почти на 50% дешевле батареи, собранной на заводе. Купить его можно на российских торговых интернет-площадках или заказать прямую доставку из страны-производителя.

Ответов на вопрос как сделать солнечную батарею для дома своими руками во всемирной сети можно найти очень много. Кроме устного описания процесса, здесь можно найти толковые видеоролики, наглядно демонстрирующие основные его этапы.

Практические советы, которые содержатся в подобных руководствах, основаны на бесценном опыте проб и ошибок. Они помогают новичкам без серьезных финансовых потерь успешно выполнить данную работу.

Сборка солнечной батареи включает следующие этапы:

  • последовательную пайку фотоячеек в единую энергоцепочку с помощью токопроводящей ленты;
  • изготовление рамки корпуса со стеклом.

Самый ответственный момент – заливка фотоячеек прозрачным герметиком и их объединение с остекленной рамкой. Здесь существует отработанная технология, основой которой служит толстый лист поролона, предохраняющий хрупкие фотоэлементы от разрушения.

Знатоки ручной сборки рекомендуют не экономить на герметике. Если он положен слишком тонким слоем, то в батарею может проникнуть влага. Она разрушает гелиоячейки и токопроводящие дорожки.

Сколько солнечных панелей и аккумуляторов нужно для дома

На сегодняшний день все люди энергетически зависимы, представить себе комфортную жизнь без электричества просто невозможно. Однако такое удовольствие обходится недешево, особенно если за счет энергии отапливается помещение, что свойственно для частных домов. Поэтому хорошей альтернативой выступает получение экологичной энергии от солнца при помощи специальных солнечных батарей. Но для обеспечения потребностей всего дома нужно правильно рассчитать количество модулей.

Установка системы солнечных батарей

Солнечная панель может устанавливаться в любом удобном месте, куда открыто проникают солнечные лучи. Это может быть:

  • На крыше.
  • На стене дома с южной стороны.
  • На земле при участии крепежной системы.
  • На балконе.

Чаще всего, батарея устанавливается в частном доме именно на крыше. Для правильной установки на нашем сайте представлены системы креплений солнечных панелей. Здесь отсутствует заслонение тенью, и солнечный свет попадает с максимальной отдачей. Однако, чтобы получить высокую эффективность и «выжать» из работы системы достаточное количество энергии, необходимо постоянно менять угол наклона панелей, так как в разное время года солнце меняет свою траекторию. Также проследите, чтобы панели не заслоняли деревья, другие здания или прочие объекты.

Установка солнечной системы не подразумевает наличие только одних панелей. Для полноценной и правильной работы требуются следующие технические устройства:

  • Аккумулятор
  • Генератор
  • Инвертор
  • Контроллер
  • Соединительная коробка
  • Потребитель.

Какие расчеты необходимы для системы

Чтобы рассчитать необходимое количество панелей для обеспечения электроэнергией всего частного дома, нужно произвести ряд несложных расчетов и в первую очередь оценить степень затрат тока и выработки.

Расчет мощности

Мощность солнечных батарей подбирается в зависимости от требуемого электропотребления. Чтобы узнать, сколько вы тратите электроэнергии, можно посмотреть на счетчике за месяц или за сутки. Солнечные панели должны вырабатывать не аналогичное количество энергии, а на 30% больше. Это связано с рядом факторов:

  • Во-первых, солнечная энергия вырабатывается только в светлое время суток и то при условии, что солнце светит, то есть небо чистое и лучи попадают на панель под прямым углом.
  • Во-вторых, когда солнце меняет свою траекторию, то есть меняется угол наклона, то и выработка тока снижается.
  • В-третьих, для полного обеспечения электроэнергией дома на месяц учитывайте количество пасмурных дней, так как в эти дни мощность солнечной панели падает до 20 раз. То же самое касается и светового дня в разное время года и местности, ведь ближе к зиме мощность будет падать, соответственно, потребуется либо дополнительный источник сети, либо увеличение количества солнечных панелей.
  • В-четвертых, следует учитывать, что к работе солнечных батарей подключается инвертор и аккумулятор, которые также забирают на себя часть энергии, которая необходима для их работы.

Расчет максимальной мощности ведется, исходя из солнечного времени, так как ночью энергия не вырабатывается, ток ночью поступает благодаря накапливанию энергии в генераторе утром и днем. Чаще всего, к этому отрезку относятся часы с 9 утра до 17 часов вечера. Панель мощностью в 1000 Вт за это время сможет произвести 8 кВт*ч энергии, а в месяц соответственно 24 кВт*ч. Если время до 9 утра и после 17 часов также работает на производство энергии за счет попадания солнечного света, то ее можно отнести как раз к тем 20-30%, которые будут запасом с целью обеспечения других процессов и перекрытия пасмурных дней. Ну а если вы приобретете солнечные батареи большой мощностью, например, 2000 Вт, то соответственно будете получать в месяц в два раза больше электроэнергии.

Расчет емкости аккумуляторной батареи

Главное правило при выборе аккумулятора – запас емкости должен соответствовать тому потреблению энергии, которое вам нужно в темное время суток, то есть, когда не вырабатывается солнечная энергия. А если учесть пасмурные дни или холодное время года, когда солнца совсем мало, то, чтобы перестраховать себя, лучше выбирать аккумулятор с запасом, равным суточной норме потребления, например, на 7кВт и выше. Также небольшой запас энергии – до 20% – будет уходить и на саму работу аккумулятора.

Читайте также:  Как соединить светодиодную ленту между собой: поворот на 90 градусов, без пайки

Сколько нужно аккумуляторов для солнечных панелей

Чаще всего встречаются аккумуляторы мощностью 12 В, емкость их может быть разной: как 100 А/ч, так и 200 А/ч. Чем выше Ампер/час, тем соответственно он сможет сохранять большее количество энергии (1200 Вт, 2400 Вт, 3600 Вт и т.д.). Здесь все зависит от потребности вашего дома, а также от времени года, региона и широты. Кроме того, немаловажным моментом является условие работы аккумулятора: мало того, что он забирает на себя часть энергии, так его еще нельзя полностью разряжать. Поэтому расчет должен производиться с учетом всех этих моментов и погрешности.

Перед выбором аккумулятора и его покупкой учитывайте и такие особенности:

  • Батарея из свинца требует на 20% больше мощности от потребляемой энергии в частном доме.
  • Железо-никелевая батарея и кадмиево-никелевая требуют на 30% больше накапливания энергии от расходуемой.
  • Щелочная батарея единственная из всех видов аккумулятора, которая не требует дополнительной зарядки, ее можно использовать на полную и разряд не вредит ее будущей работе.

Сейчас нет проблем с выбором аккумуляторов. Они представлены в разной ценовой категории, разные фирмы и емкость запаса. В первую очередь нужно исходить из мощности солнечных батарей, необходимого количества энергии для обеспечения дома и погодных условий. Все разработанные аккумуляторы для систем резервного питания идеально подходят для солнечных модулей. Но для качественной и бесперебойной работы лучше обзавестись еще и контроллером, который будет устранять такие риски, как глубокая разрядка или перенапряжение.

Расчет количества солнечных батарей

Как мы уже сказали, при расчете солнечных батарей необходимо отталкиваться от потребностей системы. То есть нужно оценить затраты электроэнергии в сутки или за месяц. Как это правильнее сделать? Возьмите все приборы в доме, которые на постоянной основе потребляют электричество – холодильник, телевизор, микроволновая печь, электрочайники и электролампы. Ознакомьтесь с паспортом прибора и его суточным потреблением электроэнергии либо посмотрите эту информацию в интернете. После умножьте на количество дней в месяце, сложите все показания по приборам, и вы получите приблизительное значение, которое вам нужно получить от работы солнечной батареи с учетом ее мощности и количества элементов.

Чтобы ничего не забыть, для определения необходимого количества батарей учтите нижеприведенные рекомендации:

  • Рассчитывая мощность панели и ее выработку, помните, что активнее всего солнце светит не более 7 часов в день, в ночное время суток энергия не производится, а используется из аккумулятора.
  • Обязательно прибавьте дополнительно около 30% расхода электроэнергии на работу и заряд АКБ, а также инвертора. Если вы приобретете и PWM контроллер, тогда до 50%.
  • Сложите все показатели потребления электроэнергии приборами в доме в зависимости от времени их работы и разделите на 7 часов (количество часов работы солнечной панели, которые дают максимальную выработку), результатом станет мощность одной батареи. Если показатель получился слишком большим, тогда нужно увеличить количество панелей, чтобы получить недостающую электроэнергию, в том числе с погрешностью до 50% на расход другого оборудования – контроллер, аккумулятор, инвертор.

Для большего понимания рассмотрим пример. Итак, вы произвели все расчеты, и у вас получилось, что в месяц на обеспечение работы всех электроприборов уходит 60кВт*ч. Плюс учитываем дополнительно расходуемую энергию, которая теряется при работе АКБ и инвертора – 30% и получаем общую цифру 78кВт*ч. Если оценить количество пасмурных дней в месяце, это где-то 5-6 дней в зависимости от региона, то в итоге оптимальным значением, покрывающим все риски, будет где-то 100 кВт*ч. Теперь рассчитываем, какая нужна батарея и мощность: 100кВт*ч/30 дней/7 часов работы = 0,47 кВт. То есть вам достаточно приобрести панель с мощностью в 0,5кВт. Для покрытия зимних электронужд потребуется либо добавить батарею, либо сразу купить с большей выработкой.

Определение стоимости системы

Назвать точно, во сколько вам обойдутся солнечные батареи вместе с необходимым техническим оборудованием и установкой, невозможно. Так как сегодня на рынке представлено огромное количество фирм, которые предлагают различные панели как по качеству, так и по мощности, срокам гарантии, дополнительным характеристикам. Есть даже схожие варианты по своим параметрам, но цена будет разной. Поэтому оценивайте все факторы в совокупности и выбирайте проверенных поставщиков. В среднем стоимость батареи мощностью 1кВт где-то в пределах 70 000 рублей. Но если вам нужно купить не одну панель, а несколько, то вы можете смело рассчитывать на скидку либо на бесплатную доставку.

Помимо расходов, связных с покупкой солнечных батарей, вам в обязательном порядке нужно будет приобрести и другие элементы системы, а именно: специализированный аккумулятор, инвертор и качественный контроллер. Например, мощный аккумулятор 12В и 200А/ч обойдется около 20 000 рублей. Есть и дороже, которые отличаются длительным сроком службы более 10 лет. В качестве альтернативы вы можете купить автомобильный аккумулятор, его цена будет на порядок ниже, однако его нельзя будет использовать в жилых домах, к тому же они не отличаются долгой работой, не более 5 лет обычно.

Ну и, конечно же, не обойтись без инвертора. С помощью инвертора постоянный ток от солнечной батареи перерабатывается в переменный с напряжением 220В, который мы используем для своих бытовых нужд. Инверторы также отличаются устройством, техническими характеристиками, производителями и сроком гарантии. Лучшими считаются синусоидные. Цена их находится в пределах от 13 000 до 20 000 рублей. Поэтому рассчитать общую сумму расходов на установку солнечной системы можно только исходя из своих потребностей, финансовых возможностей и качества оборудования.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: