RGB, RGBW и RGBWW: что это значит, расшифровка, в чем отличие между собой

Управление светом: новые возможности светодиодных лент

В некоторых моделях этого устройства в один светодиод встроены сразу три кристалла, поэтому светодиодная лента может подсветить помещение самыми разными цветами. Чем дороже и многофункциональнее управляющий контроллер, тем красивее будет подсветка, которая может быть любого оттенка.

Комплект устройств для создания многоцветной подсветки

Режим светодиоду задает ПУ, нажатием на кнопку можно менять не только оттенки ленты, но и скорость смены цветов, яркость подсветки.

Что это такое

Светодиодная лента RGB имеет три кристалла (разноцветные светодиоды). Каждый светодиод отвечает за свой цвет: R-Red (красный), G-Green (зелёный), B-Blue (синий). В результате смешения этих базовых цветов получаются самые разнообразные оттенки, это значит, что светодиодные ленты RGB имеют широкий цветовой спектр.

Когда один из основных трёх компонентов приобретает наибольшую интенсивность, получаемый цвет приобретает оттенок основного (красноватый, зеленоватый или голубоватый). В случае если два основных компонента имеют одинаковую степень интенсивности, тогда получаемый цвет является оттенком вторичного цвета (голубоватый, пурпурный или желтый). Вторичный цвет формируется суммой двух основных цветов одинаковой интенсивности: голубой получается в результате смешения зеленого и синего, пурпурный – красного и синего, желтый – красного и зеленого. Каждый вторичный цвет является дополнением одного основного цвета. Когда основной и вторичный цвета складываются вместе, получается белый. Голубой дополняет красный, пурпурный – зеленый, а желтый – синий.

Чем характерны наши изделия?

Перечисленные способы «набора» нужного оттенка света дают возможность получить свечение более приятное для зрения. Кроме того, расширяет спектр принципиально узкого, обычно с одной линией, излучения p-n перехода. RGB-ленты имеют минимум 3 линии в спектре, RGBW – 4, а светодиодные ленты RGBWW – 5. Это основные линии, есть еще несколько спектральных линий излучения с меньшим уровнем яркости.

Для обычного покупателя эти технические тонкости проявляются в повышении суммарной яркости и значительного роста качества цветовоспроизведения. В свете лент RGB, RGBW и RGBWW отличие цветовых вариаций будут лучше восприниматься зрением.

Где и как используется

LED RGB широко применяются в самых разных сферах. Одна из самых популярных областей использования – световой дизайн интерьеров и экстерьеров. Диодные ленты RGB размещаются в маленьком профиле на потолке, таким образом делая подсветку «за карнизом». Разные цвета создадут неповторимую атмосферу, а вместе с небольшими светодиодными лампами GX53 улучшат качество освещения в несколько раз.

Эти источники света прекрасно подходят для наружного применения. Благодаря высоким уровням защиты, их можно устанавливать даже под водой, так как они не испытывают негативного влияния влаги и отличаются водостойкостью. Это отличное решение для создания уникальной подсветки бассейна или водных комплексов. Вместе со светодиодными лампами Gauss они улучшат и внесут разнообразие в освещение разных объектов.

Также такие типы светильников активно используются в рекламе как внутри помещений, так и снаружи. Они являются идеальным заменителем гораздо более энергоемких люминесцентных ламп, которые используются для освещения витрин в магазинах. Возможность выбора цвета свечения и его режимов подчёркивает товар, витрины, стенды и вывески. Ювелирная продукция, различные виды часов, картины и прочие декоративные предметы приобретают иной вид с использованием таких светильников.

Помимо вышеперечисленного они применяются в автотюниге. Они могут отлично заменить неоновое освещение, применяемое для подсветки днища и освещения салона автомобиля. Более того, эти источники света применяются даже для подсветок фар.

Особенности конструкции RGB-ленты

Схема RGB-ленты

Она представляет собой гибкую печатную плату, на которой размещаются светодиоды, а также резисторы, задача которых – ограничивать ток диодов. Ширина чаще всего варьируется от 8 до 20 мм. Встречаются такие, на которых светодиоды различных цветов размещены рядом друг с другом. Однако наибольшее распространение получили устройства со светодиодами, скомплектованные в одном корпусе. У такого RGB LED имеется 6 выводов.

Они могут иметь разную мощность, количество светодиодов на метр, размер, схему и конструкцию. Например Gauss LED: длина 5 метров, мощность 4.8 Вт, напряжение 12 В, светодиоды SMD 3528, их количество на метр – 60, без защиты от влаги и воды.

Технические характеристики

  • Тип светодиода: SMD 3028, SMD 3528, SMD 5050, SMD 5730, SMD 5730-1.
  • На основе SMD 3528 на 1 метр может располагаться 30, 60, 72, 120 штук диодов. Количество зависит от модели и производителя.
  • Яркость SMD 3528 – 70 лм/Вт. Яркость SMD 5050 – 80 лм/Вт. Яркость SMD 5730 – 100 лм/Вт. При сравнении SMD 3528 с улучшенными версиями SMD 5730 и SMD 5730-1, то при практически одинаковой площади элемента, излучающего свет, мощность светового увеличилась в 22 раза, но и энергопотребление – в 15 раз.
  • Рабочее напряжение: 12 В, 24 В.
  • Цвета свечения: монохромный и многоцветный. Три основных вида – красный, зелёный, синий. Цвет свечения задаётся с помощью RGB-контроллера. Существуют светодиодные ленты с пультом управления. Они бывают как сенсорные, так и кнопочные.
  • Длина бывает самой разной – от 5 до 40 метров.
  • Оттенки: тёплые (2700 К), холодные (6000 К).
  • Шаг резки. У каждой торговой марки своя ширина модуля МДС (три диода и резистор). Разрезать нужно только по специальным линиям.
  • Рабочая температура от -40 до +40 градусов.

Степени защиты:

  1. IP 68. Полностью покрывается силиконом и помещается в П-образную подложку. Абсолютная стойкость к влаге и воде
  2. IP 67. Силикон покрывает её, тем самым изолируя диоды и дорожки, по которым протекает ток. Очень высокая стойкость к влаге и воде.
  3. IP 65. Сама лента размещена в пустотелой силиконовой прямоугольной оболочке.

Существуют разные характеристики блоков питания:

  1. Блок питания 12 В, 5A, 60 Вт.
  2. Блок питания 12 В, 10A, 120 Вт.
  3. Блок питания 12 В, 20A, 240 Вт.

Цвет: RGB Multicolor, UV-ултрафиолет, цвета, белый диапазон CCT

RGB Multicolor

Цветовая температура светодиодной ленты зависит от личных предпочтений. Лента RGB – хороший вариант для тех, кто не хочет привязываться к одному цвету. Ленты RGB – мульти цветные светодиодные ленты, которые отлично подходят для акцентного освещения по всему дому. Если вы используете полосы RGB, просто убедитесь, что вы используете 3-канальный контроллер, он необходим для переключения цветов и создания динамических программ.

Читайте также:  Красные трусы на люстре (примета): как вешать и проводить ритуал

UV-ультрафиолет

Также существует ультрафиолетовая (УФ) версия светодиодных лент. Это отличный вариант если вы применяете ультрафиолетовое излучение для работы или для создания собственного черного света.

Одноцветные светодиодные ленты

Не стоит забывать про одноцветные светодиодные ленты: красный, зеленый, синий, желтый и белый (3000-6000K CCT).

Что такое CCT?

Вы возможно часто сталкиваетесь с аббревиатурой CCT, давайте разберемся, что это такое.

CCT расшифровывается как Correlated Color Temperature – Корелированная цветовая температура, которая является цветовой температурой света, измеряемой в градусах Кельвина (K). Температурный режим света светодиодной ленты напрямую влияет на то, как выглядит свет. Посмотрите на фотографии ниже для справки. Теплый белый – это то, что мы называем 3000К, который выделяет оранжевый или желтоватый вид. Когда мы увеличиваем градусы Кельвина, цвет меняется от желтого до не совсем белого до натурального белого, а затем до синевато-белого, который известен как холодный белый.

CCT расшифровывается как Correlated Color Temperature – Корелированная цветовая температура

Схема подключения

Перед тем как подключить светодиодную RGB-ленту, важно помнить о следующих основных правилах:

  1. Она монтируется непосредственно на алюминиевый профиль.
  2. Блок питания приобретается с запасом мощности.
  3. Подключение RGB-ленты происходит параллельно и отрезками, в длину не более, чем 5 метров.

Подключение светодиодной RGB-ленты

Потребляемая мощность указывается та, которая приходится на законченный фрагмент с длиной один метр. Количество тока, который потребляет каждая цветовая цепь, всегда можно найти в специальных справочниках.

При отсутствии информации о параметрах (кроме мощности) всё равно их можно рассчитать. Метод расчёта потребляемого тока и выбора подходящего блока питания можно использовать с помощью условно неизвестного форм-фактора светильника с длиной 5 метров, которая работает при стандартном напряжении 12 В.

Схема подключения RGB-ленты 20 метров

  • Провода со знаком плюс всегда подключаются к плюсовой клемме выхода диммера (оut).
  • Провода R, G и B нужно подключить к аналогичным разъёмам диммера.
  • К выходу блока питания также подключается вход RGB-контроллера. Все процессы соединения должны выполняться с соблюдением полярности.
  • К сети переменного напряжения (220 В) подключается вход блока питания.
  • Зачастую у блоков питания имеется следующее обозначение проводов: коричневый отвечает за фазу, синий означает ноль, жёлтый или зелёный – защитное заземление. В блоках питания из пластика наличие защитного заземления не предусмотрено.

Как соединить RGB-ленту между собой

Это можно сделать при помощи коннекторов.

  • При необходимости следует отрезать нужный кусок LED-полосы. Разрезать надо лишь в специальных местах.
  • Если контакты в силиконе, тогда надо его аккуратно убрать.
  • Важно сделать перпендикулярный надрез в нужном месте и с торца отслоить силикон, чтобы не повредить сами контакты.
  • При соблюдении полярности два отрезка надо положить в коннектор и соединить ленты между собой.

Какие есть виды

  • Существуют классические RGB-ленты, имеющие три независимых монохромных канала R, G, B.
  • У светодиодной RGBW-ленты к трём основным каналам добавлен дополнительный канала белого света W (White). Его, как и основные цвета, можно регулировать. Часто канал W имеет холодный оттенок белого (6000 К).
  • RGBWW является дополненной версией RGBW, у которой имеется пятый управляемый канал White Warm (тёплый белый цвет). Цветовая температура варьируется от 2700 до 2900 К.
  • Наиболее полноценное свечение и разнообразная подсветка делается из светодиодов SMD 5050. У них есть возможность регулировать и менять все цвета в одном источнике света.

Светодиодная лента White-MIX

Гибкая светодиодная лента идеально подходит для подсветки разнообразных объектов интерьера и рекламы. Использование двух типов диодов, как с холодным цветом излучения, так и с тёплым, позволяет создавать наиболее интересные решения освещения.Светодиодная лента » MIX White» позволяет получить переход от холодного к теплому белому освещению благодаря чередованию диодов разной цветовой температуры. Клеящий слой 3М на обратной стороне упрощает монтаж и установку светодиодной ленты.

Как выбрать

  • Упаковка должна быть без повреждений, сухой и чистой.
  • Правильность написания названия продукции производителя.
  • Обязательное наличие штрихкода (и/или QR-кода).
  • Наличие всех технических характеристик и параметров на упаковке.
  • Наличие инструкции и/или паспорта.

Использование светодиодных лент является правильным решением для сложных дизайнерских задач, в вопросах строительства и производства. Более того, их применение в архитектурной и рекламной областях значительно будет способствовать выполнению поставленных задач.

Cветодиодная лента БОКОВОГО (ТОРЦЕВОГО) СВЕЧЕНИЯ SMD 335

Данная разновидность лент характеризуется в первую очередь расположением светодиодов цилиндрической формы по торцу ленты. Светодиодная лента бокового излучения монтируется непосредственно по бокам объектов, требующих подсветки. Такое расположение чрезвычайно удобно при подсвечивании торцов монитора, плазменной панели и другой аппаратуры. Боковая светодиодная лента отличается от лент прямого свечения и способом распространения света. Направленность света в лентах данного вида идёт параллельно освещаемой поверхности, т.е. вдоль плоскости.

Светодиодные ленты RGB, RGBW и RGBWW

Светодиодными лентами в наше время трудно кого-либо удивить, поскольку данная сфера светотехники всё прочнее закрепляет свои позиции в самых разных отраслях человеческой жизни. Такая тенденция способствует тому, что разновидности подобных изделий разрастаются и совершенствуются, обретая ряд новых возможностей. Те, кто не очень глубоко погружался в изучение конструктивной специфики подсветок, выполненных с применением лент, с удивлением обнаружили существование нескольких новых модификаций многоцветных изделий. Именно о них мы сегодня и будем говорить.

Всем известно, что светодиодные ленты бывают монохромными, то есть излучающими только один цвет, и многоцветными RGB, позволяющими при помощи комбинации одновременного свечения трёх диодов добиться целой гаммы оттенков. Во всех случаях изделия представляют собой набор полупроводников и резисторов, расположенных на гибкой печатной плате. Последняя в наименьшей степени влияет на цвет свечения: зачастую она выполнена в белом или жёлтом цвете, в отдельных моделях может быть предусмотрена чёрная подложка. Окраска платы играет не только эстетическую роль, но также частично выполняет функции отражателя света непосредственно на изделии. Диоды же и резисторы являются ключевыми звеньями в системе.

Чем обусловлены различия?

Светодиодные ленты разных типов фактически по-разному синтезируют белое свечение. Например, в монохромных моделях белого свечения используется обычный люминофор. Это вещество способно преобразовывать энергию в световое излучение. Свет, вырабатываемый таким образом, выходит довольно мягким, равномерным и визуально приятным. В свою очередь, RGB-ленты получают все цвета, в том числе и белый, путём смешения красного, зелёного и синего. Поскольку в лентах от разных производителей, использующих светодиоды различных марок и качества, глубина и яркость каждого оттенка будет несколько отличаться, результирующее белое свечение также выглядит неодинаково.

Читайте также:  Какие светодиоды используются в лампах на 220 вольт

Вниманию тех потребителей, кто хочет получить именно снежный тон свечения, представляется комбинированное решение: RGBW-лента. Она совмещает в себе не только три привычных световых кристалла, но и четвёртый белый светодиод. При этом у изделия сохраняется возможность переключаться между синтетическим белым, получаемым совмещением свечения, и чистым белым. С использованием RGB-контроллеров пользователь обретает возможность целиком контролировать оттенки ленты беспроводным способом, с использованием пульта дистанционного управления. Регулировке поддаётся не только цветовая гамма, но также яркость и визуальные эффекты, если таковые предусмотрены.

При производстве RGBW-лент для большей равномерности либо помещают четыре кристалла в один корпус, либо применяют двухрядную расстановку диодов. Это означает, что для поддержания необходимой яркости и равномерности свечения в непосредственной близости друг от друга стоят многоцветные и одноцветные диоды. Такое решение скрашивает неприятные явления при переключении режимов и позволяет создать впечатление, что световое излучение исходит из тех же точек.

Изделия RGBW-типа оснащены пятью выводами – четыре на RGB, один на W и общий плюс. Каждый из упомянутых проводников присоединяется к контроллеру, являющемуся фактическим органом управления. Во всех современных моделях пользователю доступен не только пульт ДУ, но и возможность руководить работой ленты при помощи собственного смартфона. Доступный функционал остаётся прежним, а удобство управления становится даже выше. Дабы «разбавить» естественный белый цвет, в некоторых лентах существует возможность добавить в него немного синего или жёлтого свечения, получая таким образом холодное или тёплое освещение.

Следующая разновидность многоцветных лент, которой необходимо уделить внимание, кодируется как RGBWW. В данном случае к четырём уже известным нам каналам прибавляется пятый с тёплым белым светом (буква «W» на конце аббревиатуры означает «warm» – тёплый). В рассматриваемом случае для достижения максимально полной палитры цветов первый белый канал делают более холодным, около 6000 К, а второй – как и декларируется, тёплым – от 2700 до 2900 К. Располагая такими оттенками, гораздо проще с максимальной точностью выставить именно то освещение, которое необходимо.

Специалисты отмечают, что ширина диапазона, в котором изменяется цветовая гамма у лент типа RGBW и RGBWW заметно больше, чем у обычных многоцветных RGB-моделей. По принципам подключения все ленты подчиняются единым правилам. Разница состоит лишь в том, какие именно контроллеры будут задействованы: чем больше у ленты каналов, тем прогрессивнее должен быть аппарат управления. Для использования RGBWW-лент лучше не прибегать к универсальным моделям, а приобретать те контроллеры, которые предназначены именно для изделий данной серии.

Практические рекомендации

При выборе светодиодных лент необходимо опираться на свои потребности и финансовые возможности. К примеру, если для требуемых целей нужен фиолетовый оттенок, который не должен переключаться ни на один другой цвет, приобретать полихромное изделие зачастую нет смысла. Лучше поискать в продаже светодиодную ленту на 12 В, изначально изготовленную в необходимом цвете. Практически любой промежуточный тон может быть найден среди монохромных моделей – необходимо лишь уделить процессу поиска достаточное время.

При размещении во влажных зонах или на улице, следует позаботиться о безопасности электрических узлов. Потому сюда должны монтироваться только ленты с классом защиты IP65 или IP68. Высокая защищённость, разумеется, сказывается на цене продукции, однако она же является залогом безопасности потребителя, а также сохранности его жилища и имущества.

Специалисты по монтажу светотехнических изделий утверждают, что монтаж четырёх- или пятиканальной ленты оправдывает себя лишь тогда, когда предусматривается постоянная динамическая подсветка. То есть, в случаях, когда светодиодные изделия приобретаются для эстетически-декоративных целей (в клуб, бар, для организации вечеринки и пр.), разноцветность и вариативность себя покажут хорошо, а в остальных ситуациях – такой подход неразумен. Кроме того, что ленты типов RGBW и RGBWW стоят заметно дороже обычных трёхцветных и монохромных, они также не способны обеспечить существенную освещённость белым свечением, достаточную для любых задач, кроме развлечений. При всех преимуществах, данная категория продукции носит характер вспомогательного источника света и не может выступать основным.

Многочисленные эксперименты показывают, что монохромная лента от любого производителя с хорошей репутацией фактически перебивает свечение от RGB-моделей. Для любых целей, помимо сугубо декоративных, монтажники склонны рекомендовать устанавливать полихромную ленту с удельной мощностью от 7,2 до 14,4 Вт/м, параллельно дополняя её отдельным изделием с белым оттенком необходимой цветовой температуры. В последующем это позволит независимо включать лишь те тона, которые необходимо, не расходовать электроэнергию попусту и получать достаточно яркое светлое освещение. Вторая лента может выступать как дополнительный источник – тогда будет достаточно мощности того же порядка, что и у многоцветной, а может служить и основным локальным освещением – в этом случае требуется нагрузка на неё около 20 Вт/м.

Практика показывает, что для мощных изделий с белым светом необходим достаточно серьёзный цветной «партнёр», если стоит задача комплексно осветить помещение. Например, RGB-лента SMD5050, оснащённая светодиодами в количестве 60 шт/м и имеющая мощность 14,4 Вт/м, как нельзя лучше подойдёт, чтобы составить пару модели белого свечения с мощностью в 20 Вт/м. Всё дело в том, что квадратные диоды более органично распределяют свет и могут тягаться со светлым оттенком в плане освещённости. Если не соблюсти баланс, весьма вероятно, что при одновременном включении изделий какого-то из тонов не будет видно вовсе.

Ещё одна банальная рекомендация от специалистов заключается в том, что при заведомой комбинации двух разнотипных лент лучше идти по самому простому пути – приобретать изделия с нейтральным цветом свечения. С ними будет гораздо проще добиться желаемого цветного оттенка, включая рядом RGB-модель. В том числе, это касается и того, чтобы корректировать светлое освещение в сторону более тёплых или холодных тонов.

Читайте также:  Как узнать на сколько вольт светодиод: мультиметром, по внешнему виду, таблица параметров

Следует помнить о таком аспекте как цветовые искажения. Осуществляя ремонт у себя в квартирах, потребители сейчас нередко прибегают к использованию светодиодных лент – в том числе, многоцветных. Для подсветки натяжных потолков монтаж изделий производят, оставляя отступ как минимум 0,5-1 см от ближайшего перекрытия. При использовании RGB-изделий, в которых не предусмотрены белые кристаллы, цвета предметов интерьера в обязательном порядке получат незначительное цветовое отклонение. Самые сильные эффекты наблюдаются при подсветке в синей части спектра. Чтобы не разочароваться в результате после первого включения, необходимо либо заранее пересмотреть колористическую концепцию подсветки, либо принять меры по её балансировке другими цветами.

Какого бы типа ленту ни было принято решение монтировать, вначале следует оценить степень её нагрева. Зачастую чуть больше других греются высокозащищённые изделия. Это вполне логично – находясь в герметичной оболочке, они не могут охлаждаться благодаря конвекции, из-за чего весь отвод тепла происходит за счёт теплопроводности. А такой процесс длится очень долго внутри силиконовых материалов и защитных заливок. Ленты без оболочки нуждаются в пассивной помощи – радиаторах, обладающих достаточной площадью для быстрого теплоотвода. Ими выступают алюминиевые профили, которые одновременно помогают мастерам проложить армирующую основу по всем тем местам, где планируется располагать светотехническое изделие. Кроме того, профили надёжно защищают ленту от механических повреждений, вызванных разными источниками.

Вместо заключения

Многоцветные ленты действительно представляют собой весьма прогрессивную ветвь развития светодиодной продукции. Они имеют широкий диапазон свечения, а в комплекте с продвинутыми моделями контроллеров демонстрируют до 16 млн оттенков. Оптическое смешение трёх, четырёх или пяти цветов позволяет получить богатейшую палитру. Причём даже не это самое важное: гораздо интереснее исследовать динамические режимы и самостоятельно создавать алгоритмы автоматического переключения цветов, управляя интенсивностью, гаммой или яркостью.

Как и другие виды лент, RGB-модели могут быть запитаны от 12 В, 24 В или 220 В. Сообразно с этим подбирается не только блок питания, но и контроллер. Не является редкостью возможность последнего работать на нескольких напряжениях, но БП всегда должны строго соответствовать уровню эксплуатируемого изделия.

Сами по себе контроллеры отличаются сложностью задач, на которые рассчитаны. К примеру, если необходимо лишь регулировать уровень яркости монохромной ленты, с этой задачей справится и диммер. Среди них есть модели, которые монтируются на стену, как выключатели, а также блоки на управлении с пульта. Второй способ гораздо более удобен, поскольку не требует прокладки проводов в стенах и упрощает монтаж изделия в квартирах с уже завершённым ремонтом. В свою очередь, полноценные контроллеры для многоцветных лент включают в себя не только функционал диммера, но и огромный набор предустановленных программ.

Контроллеры позволяют полностью руководить освещением посредством инфракрасного излучения или радиоволн. При этом различные стандарты используемых протоколов связи определяют набор доступных для пользователя возможностей. Самые прогрессивные из них могут быть включены в единую систему из класса «Умный дом» и управляться как одно из её звеньев. Используя все преимущества достижений современной микроэлектроники, человек волен украшать своё жильё самым неординарным образом.

Чем освещают автосалоны и магазины комплектующих?

Как отремонтировать светодиодный светильник своими руками

С появлением светодиодных технологий системы освещения вышли на совершенно новый уровень. Экономичные, экологически и электрически безопасные приборы сегодня эксплуатируются везде – они пришли на смену стандартным «лампам Ильича» и набравшим популярность «экономкам». Первые давно устарели с моральной точки зрения, вторые крайне опасны для здоровья из-за содержащихся внутри паров ртути.

Несмотря на продолжительный срок эксплуатации, даже такие устройства со временем выходят из строя. Дорогостоящий ремонт светодиодных светильников в некоторых ситуациях можно выполнить самостоятельно, в домашних условиях, что мы и рассмотрим далее.

Элементы светодиодных источников света

Прежде чем разбирать на составные части вышедшую из строя светодиодную лампу, обязательно изучите ее устройство и принцип работы. Стандартное оборудование данного типа имеет в составе электронную плату питания, световой фильтр и корпус с цоколем. Более дешевые модели вместо ограничителей тока и напряжения используют обычные конденсаторы.

Одна лампа может насчитывать несколько десятков светодиодов, которые соединяются последовательно или параллельно. Во втором случае конструкция получается дорогостоящей (к каждому led-диоду или группе подключается отдельный резистор), поэтому позволить себе ее могут далеко не все.

Принцип действия светодиода практически идентичен полупроводниковому элементу. Ток между анодом и катодом перемещается по прямой линии, что приводит к образованию свечения. Каждый светодиод по отдельности характеризуется минимальной мощностью, из-за чего используется сразу несколько штук. Для создания нужного светового потока применяют люминофорное покрытие, трансформирующее свет в видимый для человеческого глаза спектр.

Качественные модели содержат высокотехнологичный драйвер, выполняющий функцию преобразователя наряду с диодной группой. Первичное напряжение идет на трансформатор, уменьшающий характеристики тока. На выходе элемента получаем постоянный ток, необходимый для питания led-диодов. С целью уменьшения пульсации в цепи используется вспомогательный конденсатор.

Несмотря на многочисленные разновидности, отличия устройств, количество используемых светодиодов, все осветительные приборы данного типа характеризуются одной конструкцией, что упрощает их техническое обслуживание.

Виды поломок и их причины

Существует несколько возможных неисправностей светодиодных приборов, что связано с их хоть и схожей, но достаточно сложной конструкцией. Самые распространенные поломки среди остальных сопровождаются следующими моментами:

  • полное отсутствие свечения;
  • периодическое отсутствие освещения;
  • кратковременное мерцание;
  • отключение света в произвольные моменты;
  • повреждение лампочки или светодиода.

Причин появления поломок еще больше. Чаще всего из них встречаются следующие:

  1. Нарушение правил и рекомендаций эксплуатации светодиодных устройств. Покупая новый светильник, обязательно изучите условия его работы, прописанные в технической методичке. При игнорировании любого правила вероятность поломок возрастает в несколько раз.
  2. Перегрев оборудования. Сами по себе светодиоды в работе практически не нагреваются, но если температура превышает заявленные 50–60 градусов, то может произойти разрыв нити, держателя или отслоение контактов на электронной плате. Перегрев иногда происходит из-за того, что не предназначенный для этих целей светильник устанавливается внутрь натяжного потолка. Это препятствует его естественному охлаждению.
  3. Выгорание led-диода – полное или частичное. Привести к этому могут высокие скачки напряжения сети или перегорание конденсатора.
Читайте также:  Как помыть хрустальную люстру (не снимая в домашних условиях)

Важно! Последняя поломка актуальна для дешевых приборов, в которых применяют некачественные платы.

Если сильнее углубиться, то можно выявить несколько других, более редких, но не менее интересных причин, из-за которых может не работать светодиодный светильник:

  • технические нарушения при подключении к сети питания;
  • короткое замыкание;
  • неверная установка оборудования;
  • ошибки при построении элементов в схеме подключения;
  • изделие низкого качества – при попытке сэкономить не забывайте о том, что покупаете «кота в мешке».

В таких устройствах могут быть изначально плохо припаяны контакты либо вместо драйвера используется дешевый конденсатор. Речь идет о так называемом заводском дефекте.

Светодиодные потолочные светильники с пультом дистанционного управления часто выходят из строя как раз из-за заводского брака. Таким образом, для выполнения ремонта важно правильно установить не только поломку, но и причину ее возникновения.

Подготовка к ремонту светодиодных приборов

Для выполнения качественного ремонта, гарантирующего исправность изделия и его продолжительную эксплуатацию в дальнейшем, необходима кропотливая подготовка. Для начала выполните демонтаж люстры, настенного светильника. В случае с настольными лампами просто отключите их от сети питания. В дальнейшем пригодятся некоторые инструменты и материалы, в том числе отвертка, плоскогубцы, изолента, нож. Клещи или пассатижи пригодятся в том случае, если корпус устройства соединен с помощью специальных скруток. Для проверки контактов воспользуйтесь мультиметром.

Поскольку светодиоды характеризуются небольшими габаритами, то для манипуляций с ними пригодится пинцет. Впоследствии при обнаружении разрыва цепи или необходимости замены какого-либо элемента может потребоваться паяльник. С целью замены led-диодов применяйте дрель с разнообразными сверлами.

Не забывайте о том, что каждый инструмент должен иметь электроизоляцию – запрещено выполнять работы пассатижами или клещами с голыми металлическими рукоятками.

Конструкция светодиодных люстр и визуальный осмотр

Светодиодные подвесные светильники, работающие от пульта дистанционного управления, появились сравнительно недавно. Их устройство знакомо далеко не всем, поэтому вкратце рассмотрим конструкцию приборов.

В самой простой комплектации люстра на светодиодах состоит из корпуса (металлического, пластикового, стеклянного), блока с регулятором (драйвера). Последний элемент используется как выпрямитель напряжения, на нем размещают клеммы и зажимы, к которым подводится питание от промышленной сети. Проводами блок питания соединен с лампами.

В сложных люстрах применяют антенну, блок управления, регулятор (несколько блоков), необходимый для автоматической настройки. Растровые осветительные приборы содержат несколько драйверов и светодиодные лампы различных видов. Последовательность ремонта напрямую зависит от конкретного типа светильника.

Изучите конструкцию устройства, используя приложенную к нему инструкцию, чтобы разобраться, где находятся блоки управления. Они могут устанавливаться как внутри, так и снаружи изделия.

Ремонт люстры без пульта ДУ намного проще. В таком приборе установлен диод или диодный мост с электролитами и резисторами. Также есть катушка с обмоткой для уменьшения пульсации.

Чтобы правильно отремонтировать уличный или внутренний светильник, соблюдайте пошаговую инструкцию:

  1. Снимите прибор с потолка или стены и удалите крышку корпуса.
  2. Изучите электронную схему, чтобы разглядеть видимые дефекты (либо подтвердить их отсутствие). К таковым относятся обрывы проводки.
  3. Удалите плафон и другие декоративные украшения оборудования, выкрутите светодиодные лампочки, если они используются.
  4. Изучите цоколь на предмет наличия прогоревших мест. Для зачистки можете использовать обычный нож.
  5. Заново выполните скрутки, подтяните все винты на крепящихся к плате элементах. При отсутствии видимых дефектов изучите непосредственно лампу.

Простейший способ проверить цепь светодиодов лампы

Рассмотрим самый легкий метод проверки цепи светодиодов. Для начала зафиксируйте лампу, используя обрезанную пластиковую бутылку с меньшим диаметром. В нее и вставляется лампа. Для подачи питания воспользуйтесь вспомогательным блоком питания (в том случае, если речь идет об устройстве на 12 или 24 В).

Вместо того чтобы прозванивать каждый led-диод в цепи, можно прибегнуть к более простому методу. По очереди устанавливайте перемычку между контактами каждого диода, используя пинцет. Если нет перемычки, то возьмите любой провод, предварительно зачистив оба конца и выполнив лужение контактов.

Важно, чтобы лампа в этот момент была подключена к сети. Как только вы замкнете контакты на сгоревшем светодиоде, прибор загорится. Если этого не произойдет, то, возможно, перегорело более одного диода.

Продолжите визуальный осмотр схемы и ищите места прогаров, вздутые конденсаторы, изучите каждую дорожку на плате. При обнаружении оборванных контактов выполните пайку. Если цепь состоит из 10 и менее элементов, то ни в коем случае не заменяйте сгоревший светодиод проводом или перемычкой. Это может привести к перегрузке катушек и сгоранию диодов.

Устранение поломки люстры с дистанционным управлением

Чаще всего причина поломки люстры с пультом ДУ заключается в перегреве матрицы. В такой ситуации ремонт выполняется следующим образом:

  1. Снимите и разберите люстру.
  2. Выясните причину поломки – отыщите перегоревшие элементы.
  3. Если потребуется замена компонентов и выполнение пайки, то обязательно изучите схему устройства, приложенную к гарантийному талону.

Перегореть может контроллер, антенна или блок управления. В данном случае требуется банальная замена вышедшего из строя изделия.

Радиаторы охлаждения

Большинство светодиодных осветительных приборов выпускается с радиаторами охлаждения. Наличие этого элемента – признак высокого качества устройства. В данных изделиях отводится специальное посадочное место, а радиатор используется для отвода тепла. Периодически нужно проводить замену термопасты. Если этого не делать, то со временем радиатор потеряет свою эффективность и плата или блок перегорит. Разберите устройство и убедитесь в том, что термопаста нанесена на обе плоскости посадочного места.

При необходимости самостоятельно тонким слоем нанесите специальную смазку на всю поверхность посадочного места. Чересчур большое количество термопасты сказывается на теплоотдаче так же негативно, как и ее отсутствие. Для увеличения тепловой отдачи можно прикрутить к радиатору дополнительную алюминиевую пластинку, при этом убедитесь, что она не перекрывает основной воздушный поток.

Качественный ремонт светодиодных источников света своими руками возможен при условии соблюдения правил безопасности и наличии конструктивной схемы электроприбора. В статье были подробно описаны основные причины и типы неисправностей, даны рекомендации по их поиску и устранению.

Читайте также:  Люстры на натяжной потолок: как выбрать, какой вид люстр подойдет

Схемы драйверов светодиодных прожекторов

Светодиодная фара 12 В YF-053 CREE Вид спереди

Публикую сегодня третью статью Конкурса статей. Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по ремонту светодиодных прожекторов и светильников, рекомендую ознакомиться.

А в этой статье автор решил поделиться схемами светодиодных драйверов и опытом по их ремонту.

Автора зовут Сергей, он живет в п. Лазаревское, города Сочи.

Статья по схемам светодиодных драйверов и их ремонту

Очень хороший у Вас сайт. Хочу поделиться схемами некоторых электронных устройств, срисованных мною с самих девайсов.

В частности, по теме освещения — схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

YF-053 CREE Вид сзади

Светодиодные модули этого прожектора выглядят так:

YF-053 CREE LED Модуль YF-053CREE-40W

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Модуль LED прожектора TH-T0440C

Схема светодиодного модуля (драйвера) TH-T0440C

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

Светодиоды для LED драйверов

YF-053 CREE Светодиод

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье Про ремонт светодиодных прожекторов (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

• LED Driver MT 7930. Typical application / Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан: 3318 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

LED Driver MT7930. Схема электрическая принципиальная

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Далее надо проверить поступление питания на микросхему, которое подается в два захода – сначала от диодного моста, потом (после нормального запуска) – с обмотки обратной связи выходного трансформатора.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Ещё схема драйвера светодиодного прожектора

Читатель Валерий Ягодаров прислал фото и схему драйвера прожектора. Он затрудняется с определением типа микросхемы. Кто знает – подскажите!

Добрый день! В рамках ” – кто пришлёт схемы реальных светодиодных драйверов, для коллекции ” высылаю одну из очередных разрисовываемых схем.

Читайте также:  Проектор своими руками: как сделать из телефона без лупы для домашнего кинотеатра

Фото платы драйвера, со стороны элементов

Драйвер прожектора скан со стороны пайки

Встал вопрос с определением типа микросхем: на одной U2 – прочитывается 0H-N0F, другая U1 – не определяется – с выгоревшей частью корпуса и оплавившимися резисторами рядышком. Возможно Вам удастся по схемотехническому решению подобрать оригинал или аналог этих микросхем.

LED драйвер на транзисторах 6N40A, 4N65

Радиоэлементы пока не выпаивал. Номиналы обычных и SMD элементов определял по буквенно-цифровому и цветовому коду. Номиналы SMD конденсаторов в схеме – “на глаз”.

В случае определения типа микросхем попытаюсь восстановить работу драйвера, если нет – пойдёт на запчасти. Далее естественно с полной выпайкой элементов можно будет полностью разрисовать принципиальную схему драйвера. На принципиальной схеме тип микросхем указан ориентировочно.
Высылаю мои наработки…

Схема драйвера светодиодного светильника LED_TSV-Lighting 20_12W_220V:

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

• led datasheet 4,8W- / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан: 3925 раз./

• led datasheet 10W / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан: 4414 раз./

На этом всё, голосуйте на Сергея из Сочи, задавайте вопросы в комментариях, делитесь опытом!

Особая благодарность тем, кто пришлёт схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

LED лампа выглядит вот так:


Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:


Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:


Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер :)

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Читайте также:  Как выбрать люстру на кухню: какая подойдет в зависимости от интерьера

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим.

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:


Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Читайте также:  Плавный розжиг светодиодов: схема включения и выключения на 12В

Схемы драйверов светодиодных прожекторов

Светодиодная фара 12 В YF-053 CREE Вид спереди

Публикую сегодня третью статью Конкурса статей. Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по ремонту светодиодных прожекторов и светильников, рекомендую ознакомиться.

А в этой статье автор решил поделиться схемами светодиодных драйверов и опытом по их ремонту.

Автора зовут Сергей, он живет в п. Лазаревское, города Сочи.

Статья по схемам светодиодных драйверов и их ремонту

Очень хороший у Вас сайт. Хочу поделиться схемами некоторых электронных устройств, срисованных мною с самих девайсов.

В частности, по теме освещения — схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

YF-053 CREE Вид сзади

Светодиодные модули этого прожектора выглядят так:

YF-053 CREE LED Модуль YF-053CREE-40W

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Модуль LED прожектора TH-T0440C

Схема светодиодного модуля (драйвера) TH-T0440C

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

Светодиоды для LED драйверов

YF-053 CREE Светодиод

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье Про ремонт светодиодных прожекторов (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

• LED Driver MT 7930. Typical application / Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан: 3318 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

LED Driver MT7930. Схема электрическая принципиальная

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Далее надо проверить поступление питания на микросхему, которое подается в два захода – сначала от диодного моста, потом (после нормального запуска) – с обмотки обратной связи выходного трансформатора.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Ещё схема драйвера светодиодного прожектора

Читатель Валерий Ягодаров прислал фото и схему драйвера прожектора. Он затрудняется с определением типа микросхемы. Кто знает – подскажите!

Читайте также:  Монтаж точечных светильников в пластиковый потолок: схема разводки проводов

Добрый день! В рамках ” – кто пришлёт схемы реальных светодиодных драйверов, для коллекции ” высылаю одну из очередных разрисовываемых схем.

Фото платы драйвера, со стороны элементов

Драйвер прожектора скан со стороны пайки

Встал вопрос с определением типа микросхем: на одной U2 – прочитывается 0H-N0F, другая U1 – не определяется – с выгоревшей частью корпуса и оплавившимися резисторами рядышком. Возможно Вам удастся по схемотехническому решению подобрать оригинал или аналог этих микросхем.

LED драйвер на транзисторах 6N40A, 4N65

Радиоэлементы пока не выпаивал. Номиналы обычных и SMD элементов определял по буквенно-цифровому и цветовому коду. Номиналы SMD конденсаторов в схеме – “на глаз”.

В случае определения типа микросхем попытаюсь восстановить работу драйвера, если нет – пойдёт на запчасти. Далее естественно с полной выпайкой элементов можно будет полностью разрисовать принципиальную схему драйвера. На принципиальной схеме тип микросхем указан ориентировочно.
Высылаю мои наработки…

Схема драйвера светодиодного светильника LED_TSV-Lighting 20_12W_220V:

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

• led datasheet 4,8W- / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан: 3925 раз./

• led datasheet 10W / Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан: 4414 раз./

На этом всё, голосуйте на Сергея из Сочи, задавайте вопросы в комментариях, делитесь опытом!

Особая благодарность тем, кто пришлёт схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Ремонт светодиодного светильника в домашних условиях

Экономия и дизайн в сфере освещения привели передовые технологии почти в каждый дом. Многие меняют обычные цокольные люстры на экономичные светодиодные изделия. Не все знают, как отремонтировать светодиодный светильник самостоятельно, тем более из каких деталей он состоит внутри. Как инструментом пользоваться при поломке, с чего начать весь процесс. Попробуем разобраться детально, какие бывают поломки в приборах и как некоторые светодиодные люстры отремонтировать своими руками.

Виды поломок и их причины

Типичные поломки: частичное или полное отсутствие освещения, кратковременное мигание или самопроизвольное отключение, выход из строя.

Причины: Температура достигла выше 50 градусов, разрыв контакта самой нити и держателя, если платный вариант, а не ламповый, отслоение контактов на плате.

Выгорел светодиод, частично или полностью. Причина: Перенапряжение в сети, перегорел конденсатор (пробой). Обычно поломка происходит в дешёвых вариантах плат.

Существуют дополнительные причины, приводящие к выходу из строя прибора, а именно: кратковременное замыкание в цепи, неправильное подключение к сети, несоблюдение схемы подключения устройства при монтаже.

Плохая припайка контактов цепи, светодиодов к плате, слабое крепление проводов в цокольной части ламп. Слабая пайка проводящих элементов (проводов, шин). Причина: Заводской дефект. Ремонт многих светодиодных люстр с пультом управления проводят именно по этой причине.

Подготовка к ремонту светодиодных приборов

Перед тем как отремонтировать светодиодный светильник, прибор необходимо снять. Понадобится некоторый инструмент; отвёртка тонкая с плоским концом, крестообразная. Если соединение было смонтировано с помощью скруток, нужны будут клещи с изолированными ручками, изоляционная лента и прибор мультиметр, для проверки контактов. Пинцет пригодится в работе с мелкими деталями.

Понадобится паяльник с тонким жалом и припоем (желательно использовать специальную насадку). Дрель со сверлом 2,5 мм., тоже может пригодиться, отсоединять цокольную часть лампы, высверлив крепления. Несколько тонких проводов по 10 см., длины.
Внимание! Проводить электротехнические работы без специального защищённого инструмента запрещено!

Конструкция светодиодных люстр и визуальный осмотр

С пультом управления люстры появились не так давно. Мало кто знаком с их устройством. Проводя ремонт светодиодных потолочных люстр необходимо знать конструкцию, просто в общих чертах. Разберёмся подробнее, из чего она может состоять.

Простая светодиодная люстра состоит из корпуса, блока регулятора или драйвера. Он применяется в качестве выпрямителя напряжения. В нем установлены клеммы, или клеммные зажимы, к которым подсоединяют питание сети. Затем от блока проходят провода к лампам. Их может быть от одного провода, под обычную лампу, до 12 под дизайнерский вариант устройства.

Более сложный вариант изделия, состоит из антенны, блока управления самим освещением, регулятора напряжения или неск
олькими блоками, проводящие автоматическую настройку. В растровых светильниках может быть несколько драйверов и разные типы светодиодных элементов, ламп. От конкретного вида осветительного прибора зависит проверка и ремонт компонентов.

Почему необходимо знать или выяснить конструкцию, перед тем как
начать ремонт светодиодной люстры. Причина проста, требуется определить, где находятся блоки управления, внутри люстры или в
самом элементе освещения, лампе. Вот здесь нам понадобится та самая схема люстры на светодиодах.

Ремонт светодиодной люстры работающей без пульта проводить проще. В ней нет ничего сложного, собраны по одному типу: один или несколько диодов (возможен компактный мост), электролиты (конденсаторы), пару сопротивлений (резисторов), и катушка с обмоткой. Это простейшая схема без защиты, вариантов их существует множество, но мы сейчас разберём именно простейшую схему.

  • Сняв светильник, осмотрите плату на присутствие видимых дефектов, обрыва проводов, отсутствие таковых хороший признак.
  • Снимите плафон или украшение вокруг лампы, выкрутите элементы освещения. Осмотрите цоколь, подгоревшие места говорят о плохом контакте. Если они есть попробуйте зачистить их ножом.
  • Перепакуйте клеммники, или скрутки, подтяните винты на всех деталях. Не обнаружив видимых дефектов, переходим к осмотру ламп. Вариант блочного светильника, где реле и лампы находятся рядом на большой плате, рассматривают как ремонт лампы описанной ниже.
  • Ремонт светодиодной люстры своими руками начинают с определения места поломки или обрыва.

Простейший способ проверить цепь светодиодов лампы

Сначала пробуем разобрать саму лампу. Есть разборные модели но порой потребуется нагревать феном строительным или подрезать корпус. Вначале естественно визуальный осмотр. Как правило, сгоревший светодиод отличается по цвету или имеет подгоревшую ножку и контактные площадки для пайки светодиода обгорели или отслоились.

Способ 1.

Подать питание лучше отдельным блоком питания, на лампу. Обычно 3.7 вольта подается на каждый светодиод, но бывают и другие номиналы м. Необходимо обратить внимание что в зависимости от количества светодиодов и вольтаж изменяется. Для быстрой проверки светодиодных элементов лед лампы подручными способами можно использовать любую батарейку на 3 вольта и скрепки соединив контакты. Только соблюдайте полярность подключения.

Читайте также:  Как выглядит торшер в интерьере: фото современных напольных светильников

Присоединив контакты к скрепке и соблюдая полярность, проверяем по очереди светодиоды

Подобное устройство проверки используем и при проверке встроенной подсветки светильника.

Проверяем все светодиоды подсветки на работоспособность

Неисправность одного светодиода, влечет за собой отключение всех!

Способ 2.

Прозвонить прибором нужно все не повреждённые светодиоды в цепи. Но способ есть проще, подключив лампу к питанию провести нехитрые манипуляции

  • Поочерёдно замыкать (кинуть перемычку) контакты каждого светодиода пинцетом или проводом с зачищенными и залуженными контактами.
  • Лампа загорится тогда, когда вы найдёте (замкнёте контакты) на сгоревшем светодиоде. В случае если этого не произошло, смотрите далее по цепи.
  • Проверяйте плату на причину прогаров, вздутие конденсаторов, проверьте внимательно дорожки на самой плате регуляторе. Подпаяйте оборванные контакты.

Нельзя заменять светодиод перемычкой, когда в общей цепи их менее 10, произойдёт перегрузка конденсаторов, блочные светодиоды, сгорят, когда в одном корпусе их по 3 шт. Определить их можно по трём тёмным точкам, внутри жёлтого или белого кристалла.

Ремонт лампы светодиодной

Важно знать что, светодиод имеют полярность и при его замене нужно правильно его установить на плату. Все светодиоды припаяны печатным методом, то есть погружены в олово.

Обычно, для запайки светодиода используют паяльный фен. В домашних условиях хоть и затруднительно, но возможно нанести паяльником больше олова.

Для установки достаточно установить его на печатную плату и прогреть паяльником его торцы с контактными площадками. При мощной припайке придется дополнительно с низу подогреть плату паяльником. Важно не перегреть при пайке светодиодный элемент!

Возможный способ ремонта светодиодных ламп с помощью токопроводящей пасты.

Схема лед лампы

Обычная схема недорогой китайской лампы на 220 вольт. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем.

Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами. При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.

Устранение поломки люстры с дистанционным управлением

Часто ремонт светодиодных люстр необходимо делать из-за перегрева самой матрицы. Сначала отвинчивают крепления и визуально осматривают внутреннюю часть люстры. Затем осторожно пробуют двигать плату, на месте. Определяют, нет ли обрыва проводов от блока управления, не отгорел ли провод от перенапряжения. Если отгорел, паяют на место. Проверяем поочередно все детали.

Затем понадобится оригинальная схема люстры. Без неё можно провести ремонт только люстры без дистанционного управления. Если есть блок дистанционного управления, меняют в нём батарейки на новые элементы. Светодиодные люстры с пультом управления встречаются часто, здесь понадобится для выявления поломки, точная схема контроллера люстры.

Блок управления люстрой обычно наглухо запаян в оболочку, а на неё производители прорисовывают схемы. Только это схемы подключения проводов и элементов освещения.

Встречаются и блоки с разборным корпусом, тогда вариант упрощается. При не разборном блоке позваниваем с помощью тестера выходной сигнал на элементы освещения (светодиоды). При отсутствии подачи напряжения причина может быть в поломке приёмника сигнала. Разбираем его, проверяем визуально контакты и дорожки на плате, целостность деталей. Если подача напряжения идёт на одну ветку освещения, значит поломка в блоке управления, а не в самом приёмнике сигнала.

Сгоревшую деталь можно выпаять и прозвонить, для начала все сопротивления (смотреть схему), поставив на приборе значок ОМа. Затем ёмкость конденсаторов, благо на них есть обозначения, полярность и вид также важен при проверке.

Обозначение на схеме

При обнаружении несоответствия в номинале, перепаиваем.

Блок управления люстрой отвечает за интенсивность и режимы горения светодиодных элементов. Нарушение одной из цепи (в плафонном варианте светильника), не выводит из строя блок, возможно, сгорел предохранитель.

Но всё же, проверьте блоки, нет ли на них оплавленных мест, есть, замените его новым. При неправильном подключении проводов горят только детали в блоке питания. Блок регулятор защищён от чрезмерных нагрузок. Его можно прозвонить по схеме.

Радиаторы охлаждения

Многие модели регуляторов, драйверов и блоков питания светодиодных светильников идут с радиаторами охлаждения. В них сделано посадочное место, через которое микросхема или другой элемент управления отдаёт тепло. На большинстве ламп радиаторы присутствуют.

Отсутствие специальной смазки, термопасты, причина перегрева большинства (до 15%) плат и блоков. Открутите и проверьте, нанесена ли она по плоскости посадочного места.

Термопаста наносится тонким слоем по всей поверхности посадочного места, большое количество только ухудшит передачу тепла. Прикрутив дополнительную пластинку из тонкого алюминия к радиатору, увеличить теплоотдачу можно, при этом монтаж проводят, не перекрывая основные потоки воздуха проходящие через него.

Вывод

Как видим ничего не обычного в ремонте светодиодных потолочных люстр, нет. Самому сделать это не так уж сложно. Необходимо немного терпения, чуточку практики и оловянную капельку знаний. Конечно разнообразие ламп, светильников и всевозможных люстр, не заставит нас скучать в процессе ремонта. Но в этом количестве деталей, нам поможет разобраться, точная схема светодиодной люстры и конечно огромное желание.

Видео по ремонту люстр с управлением

Не обязательно покупать новый светодиод, починить его просто, киньте маленькую перемычку между контактами. Обязательно уберите остатки сгоревшей части светодиода, зачистите плату от нагара, он проводит электричество.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: