Как выбрать лучший налобный фонарь: для рыбалки, работы

Как выбрать налобный фонарь для рыбалки

Освещение на рыбалке является одним из основных факторов, оказывающих влияние на получение хорошего улова, особенно при осуществлении ловли в вечерние или ночные часы. Использование различных фонарей позволяет видеть снасти вне зависимости от окружающих условий, что минимизирует вероятность пропуска начинающейся поклевки.

Однако перед каждым рыболовом встает вопрос правильной организации освещения и многие делают выбор в пользу налобных моделей, поскольку они обладают следующими преимуществами:

  • Выбор фонаря ↓
  • Популярные модели ↓
  • Отзывы ↓
  • Блиц-советы ↓
  1. Организация качественного освещения и одновременное освобождение обоих рук, что не мешает самой рыбалки.
  2. Внушительный ассортиментный ряд, что позволяет подобрать наиболее подходящие модели с необходимым набором функций или характеристиками.
  3. Ценовая доступность: существуют модели, покупку которых может позволить любой рыбак вне зависимости от имеющегося бюджета.
  4. Точечное освещение локальных участков и зон, где возникает подобная необходимость.
  5. Компактные размеры, отсутствие сложностей при использовании или транспортировке.

Выбор фонаря

Для получения качественного освещения необходимо серьезно подойти к процессу выбора приспособления, чтобы в дальнейшем не пожалеть о сделанном приобретении.

В первую очередь каждую модель рекомендуется оценивать по следующим основным критериям:

  1. Функциональность. Современные фонари могут иметь целый ряд различных режимов работы, с их количеством обычно растет и стоимость. Многим рыболовам достаточного одного основного режима работы для подсветки снастей, но при желании можно подобрать и более совершенные варианты. Однако необходимо учитывать, что приспособления со слишком большим количеством дополнительных функций являются менее надежными, поскольку гораздо больше подвержены различным поломкам.
  2. Габариты и вес. Компактность и вес приспособления являются основными критериями, поскольку слишком тяжелые или громоздкие фонари могут причинять дискомфорт при использовании. Лучше предварительно примерить понравившуюся модель, чтобы убедиться в удобстве ее эксплуатации.
  3. Надежность. По этому критерию оценить понравившийся вариант бывает достаточно тяжело, поэтому рекомендуется приобретать фонари от известных производителей, которые уже успели зарекомендовать себя с положительной стороны. Можно предварительно почитать отзывы независимых экспертов или других рыбаков, чтобы понять, какие модели являются наиболее удачными и качественными. Надежность крайне важна, поскольку рыбалка может осуществляться в различных погодных и климатических условиях: необходимо, чтобы приспособление обеспечивало бесперебойное и хорошее освещение даже при сильных порывах ветра, в низком температурном режиме или при обильном выпадении атмосферных осадков.
  4. Герметичность является одной из главных характеристик налобных фонарей. Необходимо знать, что приспособление с защитой от воды функционируют только при попадании на них капель дождя или иных незначительных объем жидкости, но при падении в водоем они перестанут работать. По этой причине наиболее надежными считаются водонепроницаемые варианты: обычно они стоят дороже, но такие фонари продолжает функционировать даже при падении в воду. Допустимая степень погружения имеет индивидуальные показатели для разных моделей.
  5. Материал. Приспособления с пластиковым корпусом стоят дешевле, но они обладают менее продолжительным эксплуатационным сроком и не выдерживают значительных нагрузок, их гораздо проще сломать. Современные фонари с металлическим корпусом являются более прочными, они способны выдерживать даже очень большое механическое давление.
  6. Мощность. Данный показатель должен составлять не мене 150 люмен, это минимальное значение, способное обеспечить качественное освещение во время рыбалки.
  7. Тип подаваемого света. Для обеспечения хорошего освещения в локальных участках необходимо обеспечение рассеивающей подсветки, которая достигается при помощи широкого и узкого лучей.
  8. Питание. Фактически все современные модели подпитываются от аккумуляторов, максимальный срок работы должен быть указан в прилагаемой инструкции. Приспособления, пригодные для рыбалки, должны иметь возможность обеспечивать бесперебойное освещение на протяжении 48 часов. Существуют также и универсальные варианты, которые совмещают в себе сразу несколько различных источников питания.

Популярные модели

Для облегчения процесса выбора ниже будут рассмотрены некоторые популярные модели налобных фонариков для рыбалки, которые успели зарекомендовать себя с положительной стороны:

LH-170 «Яркий луч» с мощностью 170 люмен хорошо подойдет для ситуаций, когда не планируется ловля рыбы в темное время суток, но фонарь требуется для подстраховки. Связано это с невысокой продолжительностью работы даже в сберегающем режиме, но по остальным характеристикам эта модель отлично подходит для рыбалки и иных видов активного отдыха. Проведенные испытания показали, что приспособление устойчиво перед механическими повреждениями и выдерживает даже падения с четырехметровой высоты. Также оно обладает внушительной герметичностью: фонарь не боится не только брызг, но и продолжает работать при погружении в воду до одного метра.

Приблизительная стоимость составляет всего около 700 рублей.

ZebraLight H520W при максимальных показателях луча работает не дольше одного часа, но для рыбалки подобной выработки не требуется, поскольку ее мощность составляет 260 люмен. В фонаре реализовано несколько режимов работы, поэтому мощность от 260 до 2,7 люмен регулируется пользователем; максимальная продолжительность работы при этом составляет от 1 часа до 4 дней. Существует также и режим работы маячка, в нем приспособление функционирует даже при отсутствии заряда. Основным его преимуществом является водонепроницаемость: данная модель может быть погружена в воду на несколько метров и находиться там на протяжении получаса, что никак не скажется на функционировании и не вызовет никаких поломок.

Приблизительная стоимость составляет 4000-4500 рублей.

LH-190 Cobra имеет три режима работы, обеспечивающих разную степень освещения; максимальная продолжительность функционирования составляет 55 часов. В базовую комплектацию включен аккумулятор, который можно подзаряжать через USB-порт. В качестве материала была задействована современная разновидность пластика, отличающаяся повышенной степенью прочности.

Стоимость составляет 1500 рублей.

Fenix HL25 является многофункциональным современным фонарем налобного, мощность освещения вручную регулируется пользователем и может составлять от 3 до 280 люмен; максимальная продолжительность работы варьируется от 4 до 140 часов. Напыление на стекле обеспечивает высокое качество света; луч не мигает даже при низком уровне заряда батареи. Корпус изготовлен из высококачественного алюминия, что обеспечивает надежность и защиту от механических повреждений. В конструкцию добавлен удобный механизм, который позволяет менять положение фонаря и наклонять его на 60°.

Приблизительная стоимость составляет 3000-3500 рублей.

Читайте также:  Ремонт драйвера светодиодного светильника своими руками

LED Lenser H2 представляет собой налобный фонарь, который идеально подходит для рыбалки в любых условиях благодаря своим внушительным рабочим показателям. Мощность освещения регулируется пользователем и может составлять от 60 до 350 люмен, в зависимости от нее дальность свечения луча варьируется от 100 до 260 метров. Продолжительность функционирования зависит от выбранного режима работы, в среднем она составляет 40-60 часов.

Стоимость составляет около 5000-5500 рублей.

Отзывы

Ниже приведены некоторые отзывы, в которых рыболовы делятся своим опытом использования различных вариантов налобных фонарей:

«Недавно приобрел налобный фонарь Fenix HL25, проверить его в действии пока удалось всего один раз, но опыт был положительный. Он исправно функционировал на протяжении всей ночи без каких-либо видимых изменений; мощности хватило для освещения трех удилищ».

«Недавно мой налобный фонарик, который я использовал во время рыбалки, вышел из строя, и пришлось искать ему замену. Решил не экономить и приобрести наиболее современный вариант, выбор пал на LED Lenser H2. Уже успел трижды выбраться с ним на рыбалку, все три раза я остался доволен сделанным приобретением. Понравилось быстрый переход в рабочий режим и включение сразу всех диодов одним нажатием кнопки, переключение между различными режимами также очень хорошо продумано, переходу к иному типу освещения происходит плавно».

«Налобным фонарем LH-170 пользуюсь уже почти два года, еще ни разу он меня не подвел. Приспособление очень удобное и незаменимое: на рыбалке всегда свободны руки, освещаются любые места, куда я поворачиваю голову. Не менее полезен он и при ремонте автомобиля, если нужно подсветить какой-нибудь труднодоступный участок».

«Раньше никогда не пользовался налобными фонарями даже во время ночной рыбалки, но недавно перешел на донки и фидерные удилища, и мне стало понятно – без такого приспособления в темное время суток не обойтись. Пока пользуюсь дешевой китайской моделью за 140 рублей, взял ее для эксперимента, а в ближайшее время думаю приобрести какую-нибудь более мощную и надежную модель».

«Из налобных фонарей мне нравится LH-170: хорошее качество при относительно невысокой стоимости. Приспособление прослужило всего 5 месяцев, но виноват я был сам: при сборе приложил слишком много силы и повернул что-то не в том направлении. Решил уже не ремонтировать его, а просто купить новый фонарик, стоил он всего 650 рублей. Повторно взял LH-170, он верно служит мне уже больше года».

Блиц-советы

Подводя итоги, можно дать следующие рекомендации, которые пригодятся в процессе выбора и использования налобных фонарей для рыбалки:

  1. Не стоит пытаться сэкономить на стоимости налобного фонарика, поскольку это приспособление имеет огромное значение при вечерней, ночной или утренней рыбалке. Дешевые приспособления могут выйти из строя в самый неподходящий момент, испортив этим весь отдых.
  2. Не стоит полагаться только лишь на советы продавца в рыболовном магазине, лучше предварительно проконсультироваться с профессиональными или опытными рыбаками, которые подскажут наиболее качественные и надежные варианты.
  3. Не рекомендуется использовать фонари со щелочными источниками питания, особенно во время рыбалки при низких температурных режимах. При минусовой температуре лучше всего литиевые батарейки, поскольку они неприхотливы к условиям. Однако предварительно необходимо ознакомиться с инструкцией, в которой должны быть перечислены допустимые источники питания.

Налобный фонарь для рыбалки – какой выбрать?

Фонарь является осветительным прибором, который может понадобиться в самых разнообразных жизненных ситуациях. Используются фонари и в быту, и на туристических стоянках, и на рыбалках, и во многих других ситуациях, когда нужно дополнительное освещение.

Налобный фонарь гораздо удобнее в использовании.

Рыбалка предполагает не только наличие у рыболова снастей, но и множества полезных аксессуаров , которые сделают процесс ловли или подготовки к ней комфортнее, а порой и безопаснее. Если вы отправились на ночную рыбалку, или сумерки застали врасплох, то фонарь в рыболовной сумке окажется как нельзя кстати. И поможет без затруднений разложить или собрать необходимые снасти. И, конечно же, такой фонарь для удобства использования должен быть налобным, чтобы руки оставались свободными. Покупка этого осветительного прибора точно лишней не будет, так как пригодиться он сможет не только на рыбалке, но и, например, при организации туристической стоянки на природе. Особенно, если прибыть к месту засветло не удалось, а лагерь организовать все-таки нужно. Так что фонарь обязательно должен занять свое законное место в автомобиле, туристическом рюкзаке или рыболовной сумке.

Ориентироваться при выборе налобного фонаря для рыбалки необходимо на ряд характеристик.

Яркость

Характеристика отвечает за то, насколько ярко будет светить устройство. Измеряется яркость в люменах. Так как во время рыбалки использование фонаря не предполагает необходимости освещать большие территории, то можно купить фонарь для рыбалки с яркостью 35-60 люмен, ее будет вполне достаточно.

Ширина луча и цвет светодиодов

Выбирайте фонарь с несколькими режимами работы.

Цвет светодиодов стоит подбирать исключительно под личные предпочтения. Хотя для применения фонаря на рыбалке, чтобы свет прибора не сильно отпугивал рыбу, можно выбрать фонарь с красными светодиодами. Еще одно преимущество диодов красного цвета в том, что зрению гораздо проще подстроиться к темноте после выключения искусственного освещения. То, насколько налобный фонарь далеко светит при рыбалке и использовании на природе не столь важно. А вот насколько хорошо освещается пространство на расстоянии нескольких метров, имеет большое значение. Оптимальным станет выбор фонаря, который имеет несколько режимов работы и возможность освещать что-то на расстоянии рук и на удалении.

Тип зарядного устройства и время работы

Устройство на батарейках.

Конечно, если ваши выезды на рыбалку чаще кратковременные, то покупка фонаря со встроенным аккумулятором будет практичнее. К такому фонарю не нужно покупать элементы питания, достаточно просто поставить прибор на зарядку. Приятное дополнение к таким фонарям – это возможность зарядки от прикуривателя автомобиля. А вот если вы затеваете долгую поездку, где подзарядить устройство не будет возможности, то стоит остановить свой выбор на устройстве с батарейками стандартного типа. Бывают варианты, совмещающие оба типа зарядки, что облегчает процесс выбора.

Читайте также:  Как работает светодиодная лента: какие бывают типы, размеры и способы подключения

Со временем работы – все проще. На это стоит обратить внимание в магазине, руководствуясь принципом «чем дольше, тем лучше».

Удобство использования

Пример фиксирования налобного фонаря.

Фонарь должен надежно фиксироваться на голове, независимо от сферы его применения. Не скользить, не натирать, не мешать любым вашим движениям. Одним из самых надежных способов крепления считается применение двух эластичных ремешков. Один из которых фиксирует прибор на голове, а другой (поперечный) не дает ему сползать. Ремешки должны регулироваться, чтобы была возможность подогнать их под окружность головы. Компактность и вес тоже важны. Фонарь не должен мешать выполнять любые задачи. Легкость при этом не должна наносить ущерб качеству. Какой толк от удобного легкого фонарика, крепление которого после единственной рыбалки рассыпалось? Приятным бонусом станет механизм, позволяющий регулировать угол наклона налобного фонарика и посылать луч света в определенном направлении.

Водонепроницаемость и ударопрочность

Водонепроницаемость и ударопрочность фонаря.

Так как налобный фонарь для рыбалки будет использоваться в условиях открытого воздуха, этот параметр имеет большое значение. Фонарь должен быть водонепроницаемым на случай дождя или попадания прибора в воду. За водонепроницаемость отвечает параметр IP. Самым высоким значением считается IPX8, при котором фонарь продолжит светить даже под водой. Ударопрочность – не самая первая по важности характеристика аксессуара, но лишним это точно не будет. Чем надежнее аксессуар, чем качественнее он исполнен, тем дольше он будет служить своему владельцу.

Примеры

Несколько примеров налобных фонариков от разных брендов разных ценовых категорий.

Наверное, самый простой бюджетный классический вариант устройства – это фонарь Следопыт 12L . Как понятно из названия, у фонаря 12 светодиодов, заряжается он от 3 элементов питания типа AAA. Есть наклонный механизм. Крепления имеют регулировку. Отличный выбор для тех, кто не готов тратиться на данный вид снаряжения, а обзавестись налобным фонариком для рыбалки все-таки решил.

Фонарь Led Lenser H7.2 имеет гарантию 5 лет от производителя, что наталкивает на мысли о высоком качестве изготовления и надежности. У устройства есть разные режимы работы (свет может быть как рассеянным ближним, так и дальним направленным), яркость также регулируется. Световой поток 20-250 люменов. Питание от 4-х батареек AAA. Led Lenser H7.2 – для тех, кто ищет себе помощника на годы и готов потратиться.

Налобный фонарь Яркий Луч – это решение для коротких вылазок на природу. Устройство работает от встроенного аккумулятора. Есть два режима работы, светодиод 1. Фонарь легкий, выполнен из ABS пластика. Хороший выбор для рыбалки. Главное, не забывать заряжать (работает прибор от 3 до 7 часов в зависимости от выбранного режима).

Вывод

Итак, подведем итог.

Выбирая налобный фонарь для рыбалки, следует помнить о том, что устройство будет эксплуатироваться в условиях открытого воздуха (необходимо искать водонепроницаемые экземпляры).

Не забывать о своем комфорте (фонарь должен надежно крепиться на голове и не мешать выполнению любых действий).

Определиться для себя, насколько длительным будет разовое использование прибора без возможности подзарядки (от этого зависит подбор типа питания).

Нужно выбирать модели с наличием наклонного механизма для удобства использования.

Надеемся, что мы ответили на вопрос: «Как выбрать налобный фонарь для рыбалки».

Spinningline на Яндекс.Дзен

Какая схема подключения светодиодов лучше – последовательная или параллельная

Самое правильное подключение нескольких светодиодов – последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя – быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток – это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно – 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс – от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Читайте также:  Как подключить светодиодную ленту: что нужно, схема запитки от блока питания 12 вольт

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи – почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

Uпит ILED
5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ – конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток – это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) – либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.
Читайте также:  Как собрать люстру: процесс сборки и подключения, инструкция

Выходной (рабочий) ток драйвера светодиодов – это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов – 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

Светодиоды Какой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835) см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730) драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды) драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6) драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.

Читайте также:  Схема фонарика: электрическая, на светодиодах, с зарядкой от сети

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.

Подключение к постоянному напряжению

Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Здравствуйте уважаемые Знатоки. Мне нужно собрать 2 шт. LED светильник состоящий из 20 диодов по 3W, а второй из 40 диодов. Напряжение у каждого 3,2-3,4 V, 600-700mA. Драйверы на них получаются достаточно дорогие, посоветуйте как можно их подключить в сеть 220v.
Тут представлены схемы без трансформатора через мост ну и там конденсаторы и резисторы. Подскажите её можно использовать для запитки фонаря, и как подобрать детали, Был бы очень признателен если бы кто то расписал как и что делать а главное из чего. Благодарю

Читайте также:  COB светодиод: описание, принцип работы, подключение, характеристика

Отвечает Друзь. Проще поставить диоды на 20-30 Ватт или использовать линейки светодиодные. Есть мощные диоды которые сразу подключаются в 220 вольт. У них драйвер расположен на подложке вместе с диодом, получается недорого и просто. Схема подключения светодиодов есть у меня на сайте в разделе «Питание».

Подключил 4 потолочных светильника с Led Driver,но почемуто один самый первый или самый последний в цепи мигает при выключином свете. Менял провода местами,менял блок,ничего не помогает.подскажите

Может выключатель с подсветкой. Выключатель должен размыкать фазу. Бывает небольшая наводка с другой линии на 220 вольт, заряд постепенно накапливается и светильник вспыхивает. Да и китайская схемотехника тут тоже влияет.

Добрый день.
Есть светодиодная матрица на на 64 светодиода 2835 включенная в 220в на ней есть 3-и микросхемы, произведение китайское.
Проблема заключается в том, что есть подсветка не всех светодиодов при выключенном 1-м из проводов из сети, т.е. работает как ночник.
Что можно сделать.

Пир выключении необходимо разрывать фазу, а не ноль. Может у вас выключатель с подсветкой.

Пытаюсь заменить галогеновое освещение на светодиодные лампы. От сети 220v питание идет на трансформатор HTM 70/230-240 OSRAM. Далее 12v двумя линиями по 3 лампы в каждой, подключенных параллельно. Лампы OSRAM LED STAR MR16 35 36° по 5w. При включении горят с мерцанием частотой 50гц. Как устранить мерцание с использованием готовых комплектующих, которые можно купить в магазине ( не «сделай сам»).

HTM 70/230-240 OSRAM

Купите хороший блок питания на 12 вольт и проблема исчезнет. Можете поставить параллельно конденсатор на 500-1000 микрофарад.

Здравствуйте. Вопрос такой: в здании поменяли светильники с накаливания на светодиодные. При снятии векторной диаграммы со счётчика электроэнергии заметили, что характер нагрузки поменялся на активно-емкостную (ток стал опережать напряжение на 30 градусов). Не может ли быть связано с установленными в светильника конденсаторами? Спасибо.

Коэффициент мощности изменился из-за светильников.

Добрый день!
На приборе установлено устройство плавного пуска ламп накаливания (220 вольт), при замене на светодиодные лампы, последние начинают мерцать.
Можно ли что нибудь сделать?

Уберите блок плавного пуска.

Доброго здоровья. Светодиод 3в. 20ма.сколько светодиодов можно подключить последовательно .Блок питания с гасящим конденсатором.

Длина цепи ограничена напряжением. 73 светодиода можно подключить без гасящего конденсатора.

Здравствуйте, как лучше подключить 1w диод от аккумулятора 6v, подойдет ли драйвер с питанием 12v из китая?

На схемах вроде всё указано, а дальше уже вам выбирать.

Правильное подключение светодиодов

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

Всего существует 3 надёжных способа определения полярности: визуальный, с помощью мультиметра и путём подключения к источнику напряжения. Каждый из них по-своему уникален и интересен, в связи с чем данная тема вынесена в отдельную статью: «Где плюс, а где минус?»

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Читайте также:  Люстра своими руками: 10 уникальных идеи с фото (из подручных материалов)

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами. Подключение мощных светодиодов и светодиодных матриц нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • Iдрайвера – ток драйвера по паспорту, А;
  • ILED – номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

В качестве источника питания можно использовать даже одну пальчиковую батарейку на 1,5 В. Но для этого придётся собрать небольшую электрическую схему, которая позволит повысить напряжение питания до нужного уровня. О том, как это сделать, можно узнать из статьи «Как подключить светодиод от батарейки на 1,5 В».

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых схем подключения светодиода к сети 220 В. Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Инфа о светодиодах и их подключении

Информация рассчитана на дилетантов в электронике, простым языком объясняя основные её понятия, необходимые для осмысленного подключения светодиодов к различным источникам питания.

Терминология русским языком

Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:
Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце.
Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
Измеряется в вольтах (В).
Ток — «количество электричества», проходящее по проводу в единицу времени.
Аналогичен количеству проходящей воды в трубе.
Измеряется в Амперах (А).
Сопротивление — сила, препятствующая прохождению электричества.
Аналогично сужению трубы, препятствующему свободному протоку воды.
Измеряется в омах (Ом).
Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
Аналогична толщине стенок места сужения трубы.
Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
Это батарейки, аккумуляторы, ток после выпрямителей.
Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.
Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.
Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например 50 раз в секунду.
Это электрическая сеть освещения, розетки. В них один провод (ноль) является общим, относительно которого а другом проводе (фазе) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
Аналогичен движению воды, которую насос через трубу (фазу), опущенную сверху, то выдавливает в бак (ноль), то всасывает из него.
Частота переменного тока — число полных циклов (периодов) изменения направления тока (туда-обратно) за секунду.
Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.

Читайте также:  Подключение люстры к двойному выключателю: схема соединения с 2, 3, 4 проводами

Важнейшие характеристики светодиодов
1. Полярность.
Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.
Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду, но с обратной полярностью нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода.
Минус (катод) светодиода помечается более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!
2. Напряжение питания и падение напряжения.
Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
3. Ток.
Номинальный ток большинства светодиодов соответствует 10-30 миллиамперам и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включенного резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.
Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

Расчет ограничивающего ток резистора
Сопротивление резистора:
R = (Uпит.-Uпад.) / (I * 0,75)

* R — сопротивление резистора в омах.
* Uпит. — напряжение источника питания в вольтах.
* Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
* I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
* 0,75 — коэффициент надёжности для светодиода.

Минимальная мощность резистора:
P = (Uпит. — Uпад.)2 / R

* P — мощность резистора в ваттах.
* Uпит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
* Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
* R — сопротивление резистора в омах.

Пример 1:
Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В) от автомобильного аккумулятора 12 В.
R = (12 — 2) / (0,01 * 0,75) = 1333
То есть последовательно со светодиодом нужно ставить резистор 1,333 кОм. Ближайшим по номиналу будет резистор 1,3 кОм (1300 Ом).
Теперь посчитаем минимальную мощность такого резистора.
Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,
I = U / (Rрез.+ Rсветодиода), где
Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:
I = 12 / (1300 + 200) = 0,008 А
Отсюда фактическое падение напряжения на светодиоде будет:
Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В
Теперь посчитаем мощность:
P = (Uпит. — Uпад.)2 / R = (12 -1,6)2 / 1300 = 0,0832 Вт).
Мощность резистора должна быть не менее этой величины (0,0832 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим большим по мощности будет резистор 0,125 Вт.
Результат: Для подключения светодиода с указанными характеристиками к автомобильному аккумулятору нам потребуется резистор 1,3 кОм мощностью 0,125 Вт.
Пример 2:
Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В) от сети переменного тока 220 В.
R = (220 — 2) / (0,01 * 0,75) = 29067
То есть последовательно со светодиодом нужно ставить резистор 29,067 кОм. Ближайшим по номиналу будет резистор 30 кОм.
Теперь посчитаем минимальную мощность такого резистора.
Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,
I = U / (Rрез.+ Rсветодиода), где
Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:
I = 220 / (30000 + 200) = 0,008 А
Отсюда фактическое падение напряжения на светодиоде будет:
Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В
Теперь посчитаем мощность:
P = (Uпит. — Uпад.)2 / R = (220 -1,6)2 / 30000 = 1,59 Вт).
Мощность резистора должна быть не менее этой величины (1,59 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим по мощности будет резистор 2 Вт.
Результат: Для включения светодиода с указанными характеристиками в сеть переменного тока 220 В нам потребуется резистор 30 кОм мощностью 2 Вт. Кроме того, следует оградить светодиод от вредного воздействия обратного напряжения.
Замечание: Поскольку светодиод питается только одним полупериодом, а второй полупериод по идее пропускать не должен, то мощность резистора можно было бы уменьшить в 2 раза. Но во-первых, при напряжении 220 вольт у светодиода на каждой волне обратного полупериода происходит электрический пробой, а значит ток будет проходить и в обратном направлении, а во вторых, мы в конце концов будем специально пропускать обратный полупериод (другим обратно включенным параллельным диодом), чтобы не насиловать светодиод электрическими пробоями. Поэтому нагрузку на резистор всё равно надо расчитывать исходя из двухполупериодных 220 вольт, что мы и сделали.

Читайте также:  Прожектор: что это, разновидности, особенности устройства

Ограничение обратного напряжения при подключении светодиода к переменному току
При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.
Для того, чтобы создать на светодиоде приемлемое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод, который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА).
Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.

Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам. Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.
Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.
Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых) малый обратный ток, а следовательно он не будет забирать его на себя, снижая яркость шунтируемого светодиода.

Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

Читайте также:  Подключение трековых светильников: как установить на шинопроводе, управление

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Если нет нужного резистора
Нужное сопротивление ® и мощность (P) резистора можно получить, комбинируя в последовательно-параллельном порядке резисторы других номиналов и мощностей.
Формула сопротивления для последовательного соединения резисторов
R = R1 + R2
Формула сопротивления для параллельного соединения резисторов
двух:
R = (R1 * R2) / (R1 + R2) или R = 1 / (1 / R1 + 1 / R2)
неограниченного количества:
R = 1 / (1 / R1 + 1 / R2 + … + 1 / Rn)
Мощности резисторов
Мощности резисторов в сборке рассчитываются исходя из тех-же формул, что и одиночные резисторы. При последовательном включении в формулу вычисления мощности подставляется напряжение источника питания за вычетом падения напряжения на других последовательно стоящих резисторах и светодиоде.

Правильное подключение светодиодов

Распиновка светодиода

На принципиальных схемах распиновка наглядна. На катод мы всегда подаём «минус», поэтому и обозначается он прямой линией у вершины треугольника. Обычно катод – контакт, на котором располагается светоизлучающий кристалл. Он шире анода.

В сверхъярких LED полярность обычно маркируют на контактах либо корпусе. Если на ножках контактов маркировки нет, ножка с более широким основанием – катод.

Схема подключения светодиода

В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.

Главное требование к параметрам питания – ограничение тока цепи.

Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.

Как рассчитать ограничительный резистор

Расчет сопротивления резистора Расчет мощности резистора
  • R — сопротивление ограничительного резистора в омах;
  • Uпит — напряжение источника питания в вольтах;
  • Uпад — напряжение питания светодиода;
  • I — номинальный ток светодиода в амперах.

Если мощность резистора будет значительно меньше требуемой, он просто перегорит вследствие перегрева.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона

Блок питания большинства низковольтных бытовых приборов

Как правильно подключать светодиоды

Параллельное подключение

Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.

Проще всего определить совместимость диодов при помощи низковольтного либо регулируемого источника питания. Ориентироваться можно по «напряжению розжига», когда кристалл начинает лишь чуть светиться. При разбросе «стартового» напряжения в 0,3-0,5 В параллельное соединение без токоограничивающего резистора недопустимо.

Последовательное подключение

Расчёт сопротивления для цепи из нескольких диодов: R = (Uпит — N * Uсд) / I * 0.75

Максимальное количество последовательных диодов: N = (Uпит * 0,75) / Uсд

При включении нескольких последовательных цепочек LED, для каждой цепи желательно рассчитать свой резистор.

Как включить светодиод в сеть переменного тока

Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.

При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.

Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.

Схема подключения в сеть переменного тока на рисунке справа.

Другие виды LED

Мигающий

Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: