Альтернативные виды энергии (солнечные батареи)

Виды альтернативных источников энергии

В природе энергия присутствует практически везде – ветер, вода, земля и солнце – это альтернативные и возобновляемые источники энергии. Но основной задачей человечества является создание приспособлений, которые могут извлечь ее оттуда, именно этим занимается альтернативная энергетика.

Человечество достигло невероятных успехов в этом направлении, на сегодняшний день такие установки можно изготовить самостоятельно для своего дома. Зачем нужны эти устройства, и что можно изготовить своими руками?

Необходимость использования новых источников энергии

Развитие энергетики и технологический прогресс привели к постоянному росту спроса на энергоресурсы. До 60-х годов прошлого века основным источником энергетики являлась нефть. Кризис 1973 года показал, что ориентация на один вид ресурса может повлечь за собой непредвиденные ситуации. Многие экономически развитые страны разработали новую энергетическую стратегию, которая основывается на диверсификации энергетических источников.

С этого времени ученые уделяют большое внимание проблемам всемирного энергосбережения и изучению возможностей применения нетрадиционных альтернативных источников энергии.

Освоение нетрадиционных источников

К нетрадиционным источникам энергии относятся:

  • энергия солнца;
  • энергия ветра;
  • геотермальная;
  • энергия морских приливов и волн;
  • биомассы;
  • низкопотенциальная энергия окружающей среды.

Их освоение представляется возможным благодаря повсеместной распространенности большинства видов, можно отметить также их экологическую чистоту и отсутствие эксплуатационных затрат на топливную составляющую.

Однако существуют и некоторые отрицательные качества, которые препятствуют применению их в производственных масштабах. Это – небольшая плотность потока, которая заставляет применять «перехватывающие» установки большой площади, также изменчивость во времени.

Все это приводит к тому, что подобные устройства обладают большой материалоемкостью, а значит, увеличиваются и капиталовложения. Ну, а процесс получения энергии из-за некоторого элемента случайности, связанного с погодными условиями, доставляет немало неприятностей.

Другой наиважнейшей проблемой остается «сохранение» этого энергетического сырья, так как существующие технологии аккумулирования электроэнергии не позволяют сделать это в больших количествах. Тем не менее, в бытовых условиях альтернативные источники энергии для дома пользуются все большей популярностью, поэтому ознакомимся с основными энергоустановками, которые можно установить в частном владении.

Солнечные батареи

Солнечная панель состоит из комплекса соединенных элементов, которые преобразуют солнечный свет в поток электронов. Характерной особенностью является тот факт, что они не в состоянии генерировать ток высокого напряжения. Отдельный элемент вырабатывает ток напряжением до 0,55 В, а одна батарея вырабатывает ток напряжением до 21 В, который позволяет питать 12-вольтовую аккумуляторную батарею.

Естественно, для обеспечения дома электроэнергией потребуется система, насчитывающая десятки таких устройств. Также в ее состав входят следующие компоненты:

  • контроллер для управления зарядкой аккумуляторной батареи, предотвращает повторный заряд;
  • инвертор, преобразующий ток из низкого в высокое напряжение;
  • аккумулятор.

Все три элемента лучше приобрести в готовом виде, ну, а солнечную батарею можно изготовить самостоятельно.

Процесс изготовления батареи

Батарея собирается из модулей, состоящих из 30, 36 или 72 фотоэлементов. Они соединяются последовательно с источником питания, его максимальное напряжение составляет 50 В.

  1. Из фанеры вырезается дно корпуса и вставляется в рамку, по периметру которой высверливаются отверстия. Они необходимы для обеспечения вентиляции и предотвращения перегрева во время работы.
  2. Подложка для солнечных элементов вырезается по размеру корпуса, здесь также необходимо предусмотреть наличие отверстий.
  3. Корпус окрашивается и высушивается, после этого на него выкладываются вверх ногами солнечные элементы и запаиваются.
  4. Элементы соединяются для начала рядами, затем они подключаются к токоведущим шинам.
  5. Перевернутые элементы фиксируются при помощи силикона.

Величина выходного напряжения должна составлять около 18-20 В, в этом нужно предварительно убедиться. Также в течение нескольких дней проверяется работоспособность батареи, только после этого выполняется герметизация стыков и собирается система электроснабжения.

При установке панели следует обратить внимание на следующее:

  1. Не располагать батарею в тени деревьев или высоких сооружений.
  2. Произвести ориентацию батареи в сторону солнца.
  3. Правильно определить наклон.
  4. Обеспечить доступность для своевременного удаления пыли, грязи и слоя снега.
  5. Предусмотреть подставку, регулирующую угол наклона для зимнего и летнего сезона.

Ветрогенераторы

Альтернативные источники энергии для частного дома – это возобновляемые ресурсы, к которым можно отнести и энергию ветра. Наши предки умели строить мельницы, использующие воздушные потоки для вращения лопастей, сейчас же человек научился преобразовать их в электричество.

Существует несколько разновидностей ветряных генераторов, которые различаются в зависимости от основных параметров.

Размещение оси

Различают вертикальные и горизонтальные конструкции. Горизонтальные обеспечивают автоматический поворот основной части для поиска ветра, обладают более высоким уровнем КПД. Оборудование вертикальных генераторов расположено на земле, эксплуатация и обслуживание этого вида проще.

Количество лопастей

Существуют следующие виды:

  • однолопастные;
  • двухлопастные;
  • трехлопастные;
  • многолопастные.

Последний тип используется редко, в основном, при малой скорости ветра.

Материал для лопастей

Лопасти бывают жесткими и парусными, однако из-за быстрой потери своей функциональности, в результате резких порывов ветра, требуют частой замены.

Ветряная установка состоит из следующих основных элементов, которые можно изготовить собственноручно:

  1. Лопасти, которые в результате вращения обеспечивают движение ротора.
  2. Генератор, вырабатывающий переменный ток.
  3. Контроллер, преобразующий переменный ток в постоянный, необходимый для зарядки аккумуляторов.
  4. Аккумуляторы для накопления электроэнергии.
  5. Инвертор превращает постоянный ток в переменный, необходимый для функционирования всех бытовых приборов.
  6. Мачта для обеспечения поднятия лопастей до необходимой высоты с наиболее активными воздушными массами.

Тепловые насосы

Этот самая прогрессивная технология, в которой используются альтернативные источники энергии для дома своими руками, обеспечивающая значительную экономию средств на обогрев или охлаждение дома.

Принцип работы оборудования основан на цикле Карно: в результате резкого сжатия теплоносителя происходит повышение температуры. Противоположное действие наблюдается в функционировании холодильных и морозильных камер.

Для изготовления теплового насоса могут применяться некоторые узлы, использующиеся в данном оборудовании. Тепловая энергия, отбирающаяся из грунта, воздуха, воды, попадая в испаритель, превращается в газ, далее сжимается компрессором, а температура повышается.

Классификация насосов следующая:

  1. По количеству контуров:
    • одноконтурные;
    • двухконтурные;
    • трехконтурные.
  2. По виду источника.

Встречаются следующие разработки.

Читайте также:  Подключение светодиодной люстры с пультом: схема, инструкция и процесс установки

Грунт-вода

Применяются с успехом на территориях с умеренным климатом, где прослеживается равномерный подогрев почвы в любое время года. Скважины бурятся неглубоко, поэтому разрешающие документы оформлять не придется. В зависимости от типа грунта используют зонд или коллектор.

Воздух-вода

Такие установки используются в зонах с климатом, где зимняя температура не опускается ниже 15-20 градусов. Аккумулирующееся тепло из воздуха используется для нагрева воды.

Вода-вода

Применяются в условиях наличия водоема: рек, озер, скважин, отстойников, грунтовых вод. Как известна температура водных источников значительно выше температуры воздуха в зимнее время. Этим и обусловлена эффективность данных установок.

Вода-воздух

Тепло из водоемов посредством компрессора передается воздуху и используется для обогрева жилых площадей.

Грунт-воздух

Наиболее универсальная система, использующая в качестве переносчиков энергии незамерзающие жидкости. Тепло из грунта посредством компрессора передается воздуху.

Воздух-воздух

Наиболее дешевая система, которая не требует проведения земляных работ, а также прокладки трубопровода. Способна как обогревать, так и охлаждать помещение.

При выборе одной из систем следует учесть следующее:

  • геологию участка;
  • возможность проведения земляных работ;
  • наличие свободного пространства.

Эффективность установки зависит от правильности выбора источника альтернативной энергии.

Биогазовые установки

Газ образуется в результате обработки продуктов жизнедеятельности домашних птиц и животных. Переработанные отходы используются для удобрения почвы на приусадебных участках. Процесс основан на реакции брожения, в котором участвуют бактерии, живущие в навозе.

Самым лучшим источником биогаза считается навоз КРС, хотя для этого также подходят отходы птиц или другого домашнего скота.

Брожение происходит без доступа кислорода, поэтому целесообразно использовать закрытые емкости, которые еще называют биореакторами. Реакция активизируется, если периодически перемешивать массу, для этого используется ручной труд или различные электромеханические приспособления.

Также потребуется поддерживать температуру в установке от 30 до 50 градусов для обеспечения активности мезофильных и термофильных бактерий и участия их в реакции.

Изготовление конструкции

Самой простой биогазовой установкой является бочка с мешалкой, закрывающаяся крышкой. Газ из бочки поступает в резервуар через шланг, в крышке для этой цели проделывается отверстие. Такая конструкция обеспечивает газом одну или две газовые горелки.

Для получения масштабных объемов газа используется надземный или подземный бункер, который изготавливается из железобетона. Всю емкость целесообразно разделить на несколько отсеков, для того чтобы реакция происходила со сдвигом во времени.

Процесс брожения при участии мезофильных культур занимает до 30 дней, поэтому такие условия оптимальны для бесперебойного выделения газа. Загружают навоз через загрузочный бункер, с противоположной стороны отбирается отработанное сырье.

Емкость заполняется массой не полностью, примерно на 20 процентов, остальное пространство служит для скапливания газа. К крышке емкости подсоединяются две трубки, одна отводится к потребителю, а другая к гидрозатвору – емкости, заполненной водой. Это обеспечивает очищение и осушение газа, к потребителю подается газ высокого качества.

Мини гидроэлектростанции

Самодельные гидроэлектростанции – это дополнительные альтернативные источники энергии своими руками, их можно построить у ручья или водоема с плотиной. Основа этой конструкции – колесо, которое вращается потоками воды, а от скорости течения зависит мощность установки.

Как самостоятельно изготовить конструкцию?

Для осуществления задуманного понадобятся следующие материалы:

  • автомобильные колеса;
  • генератор;
  • обрезки уголка и металла;
  • фанера;
  • медный провод;
  • магниты неодимовые;
  • полистироловая смола.

Колесо изготавливается из дисков размером 11 дюймов. Стальная труба разрезается на четыре части по вертикали, из получившихся сегментов получаются лопасти, их потребуется 16 штук. Лопасти крепятся сваркой, а диски – болтами.

Размеры сопла соответствуют ширине колеса, его изготавливают из обрезка металла. Придав соответствующую форму, края соединяют сваркой. Сопло должно быть настроено по высоте для регулирования водяного потока.

Далее, ось сваривается и на нее устанавливается колесо. Изготавливается генератор, который защищается металлическим крылом от брызг. Все элементы покрываются краской для защиты от влаги и коррозии.

Такое устройство не требует огромных капиталовложений, но оно способно значительно снизить расходы на электроэнергию.

Геотермальная энергия

В недрах земного шара таятся неизведанные виды альтернативных источников энергии. Человечество знает, какова сила и масштабы природных стихийных проявлений. Мощность извержения одного вулкана несравнима ни с одной из рукотворных энергетических установок.

К сожалению, человек еще не умеет использовать эту гигантскую энергию во благо, но природная теплота Земли или геотермальная энергетика приковывает взгляды ученых, так как она представляет собой неисчерпаемый ресурс.

Известно, что наша планета ежегодно излучает громадное количество внутреннего тепла, которое компенсируется радиоактивным распадом изотопов в коре земного шара. Различают два типа источника геотермальной энергии.

Подземные бассейны

Это естественные бассейны с горячей водой или пароводяной смесью – гидротермальные или паротермальные источники. Ресурсы из этих источников добываются посредством буровых скважин, далее энергия используется для нужд человечества.

Горные породы

Тепло горячих горных пород может быть использовано для нагревания воды. Для этого ее закачивают в горизонты для дальнейшего применения в энергетических целях.

Одним из недостатков этого вида энергии является его слабая концентрация. Однако в условиях, где при погружении на каждые 100 метров, температура увеличивается на 30-40 градусов, можно обеспечить хозяйственное ее применение.

Технология использования этой энергии в перспективных «геотермальных районах» обладает явными преимуществами:

  • неисчерпаемость запасов;
  • экологическая чистота;
  • отсутствие больших издержек на разработку источников.

Дальнейшее развитие цивилизации невозможно без внедрения новых технологий в области энергетики. На этом пути стоят трудноразрешимые задачи, которые еще предстоит решить человечеству.

Тем не менее, освоение этого направления играет важную роль, и сегодня уже существует оборудование, способное существенно сэкономить ресурсы традиционные и альтернативные источники энергии являются отличной альтернативой им. Для воплощения таких идей требуется терпение, умелые руки, а также некоторые навыки и знания.

Видео

Ознакомиться с работой различных альтернативных источников энергии в частном доме вы сможете, посмотрев наше видео.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Читайте также:  Как подключить светодиодную RGB-ленту к компьютеру: блоку питания или материнской плате

«Зеленый» курс: какое будущее ждет альтернативные источники энергии

Что такое альтернативные источники энергии

Возобновляемую энергию получают из устойчивых источников, таких как гидроэнергия, энергия ветра, солнечная энергия, геотермальная энергия, биомасса и энергия приливов и отливов. В отличие от ископаемых видов топлива — например, нефти, природного газа, угля и урановой руды, эти источники энергии не истощаются, поэтому их называют возобновляемыми. Только за 2019 год по всему миру установлено объектов возобновляемых источников энергии (ВИЭ) общей мощностью 200 ГВт.

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и Великобритания. Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Читайте также:  RGB, RGBW и RGBWW: что это значит, расшифровка, в чем отличие между собой

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Геотермальная энергия в Рейкьявике и солнечные батареи для Берлина

Отдельные города по всему миру также стремятся стать климатически нейтральными. По данным CDP, из более чем 570 городов мира, по которым ведется статистика, более 100 получают по крайней мере 70% электроэнергии из возобновляемых источников — энергии воды, геотермальной, солнечной и ветровой энергии.

В списке присутствуют такие города, как Окленд, Найроби, Осло, Сиэтл, Ванкувер, Рейкьявик, Порту, Базель, Богота и другие.

Например, Берлингтон (штат Вермонт, США) уже получает 100% электроэнергии от ветра, солнца, воды и биомассы. Вся электроэнергия Рейкьявика производится за счет гидроэлектростанций и геотермальных источников. К 2040 году весь общественный и личный транспорт столицы должен стать свободным от ископаемого топлива.

100% энергии из возобновляемых источников для швейцарского Базеля обеспечивает собственная энергоснабжающая компания. Большая часть электроэнергии поступает от гидроэнергетики и 10% — от ветра. В мае 2017 года Швейцария проголосовала за постепенный отказ от атомной энергетики в пользу ВИЭ.

Мировые столицы также не остаются в стороне. Например, Сенат Берлина утвердил план мероприятий по развитию солнечной энергетики в столице Германии «Masterplan Solarcity». В соответствии с общей стратегией развития города Берлин должен стать климатически нейтральным к 2050 году. В конце 2018 года в Берлине работали солнечных электростанций, которые покрывали 0,7% потребления электроэнергии, к 2050 году 25% энергопотребления города будут обеспечиваться за счет солнечной энергетики.

«Мы продвигаем расширение возобновляемых источников энергии в Берлине. Сейчас на рассмотрении Сената столицы находятся два законопроекта. Закон о солнечной энергии обязывает владельцев частных домов устанавливать солнечные системы на крышах. Законопроект Администрации по окружающей среде и климату сделает использование солнечной энергии в общественных зданиях обязательным уже в 2023 году. Это радикально сократит выбросы CO2 в Берлине», — рассказала руководитель фракции «Зеленые» в берлинском Сенате Зильке Гебель.

Как бизнес формирует положительный имидж, инвестируя в ВИЭ

Компании по всему миру также создают стратегии и определяют «зеленые» цели, которых они хотят достичь в течение определенного периода времени. Появилось осознание: нужно действовать ответственно и подавать экологичный пример потребителям. Конечно, использование ВИЭ может не только помочь в формировании положительного имиджа для компаний, но и снизить затраты на электроэнергию.

Так, новые серверы Facebook, а также компания General Motors будут получать энергию от солнечной электростанции. Ее строят в штате Кентукки в рамках масштабной программы Green Invest.

IKEA запланировала производить больше электроэнергии на основе возобновляемых источников, чем она потребляет, к 2030 году. В 14 странах на магазинах размещены 920 тыс. солнечных панелей, а также более 530 ветряных турбин. Ingka, материнская компания IKEA, инвестировала около $2,8 млрд в различные проекты ВИЭ и стала владельцем 1,7 ГВт мощностей. Она также продолжит вкладывать средства в строительство ветропарков и солнечных электростанций.

Химический концерн BASF будет постепенно переходить на возобновляемые источники энергии, а также планирует инвестировать в ветропарки.

Компания Intel получает энергию от ветра, солнца, воды и биомассы. С 2012 года Intel инвестировал $185 млн в 2 000 проектов по энергосбережению, а 100% электроэнергии, потребляемой корпорацией в США и ЕС, поступает из ВИЭ.

Apple также ставит перед собой цель стать углеродно нейтральной. Она приобрела несколько солнечных ферм, обеспечивая устойчивую энергию для своих центров обработки данных. С 2018 года все розничные магазины, офисы и центры обработки данных Apple работают на 100% возобновляемой энергии.

Microsoft ежегодно использует более 1,3 млрд. кВт·ч «зеленой» энергии при разработке ПО, работы центров обработки данных и производства. Компания обязалась сократить выбросы углекислого газа на 75% к 2030 году.

Солнечная энергия

Пост опубликован: 28 апреля, 2017

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.
Читайте также:  Как выполнить монтаж солнечных батарей в частных домах

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Читайте также:  Прожектор: что это, разновидности, особенности устройства

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

В чем проблема альтернативной энергетики

И в какие компании в этой сфере можно попробовать инвестировать

На бирже только и разговоров, что об экологичности и ESG.

Мы уже писали большую статью про ESG — этичные инвестиции с точки зрения экологичности, социального эффекта и менеджмента. В этой статье поговорим об экологичности подробнее.

Когда говорят об экологии, первым делом задумываются о снижении выбросов углекислого газа — декарбонизации. Но кроме декарбонизации есть множество других различных направлений: например, сохранение пресной воды, борьба с глобальным потеплением, сохранение популяций животных.

Многие из этих проблем частично решает использование альтернативных источников энергии. В статье я рассмотрю те виды альтернативной энергетики, которые не подразумевают прямого влияния на экологию, — например, большие гидроэлектростанции не подходят: хоть они и считаются альтернативной энергетикой, но непосредственно влияют на всю экосреду рек, преграждая пути для рыб и животных. Еще я исключу источники, у которых невелика перспектива распространения, — например, в мире есть не так много мест, где можно использовать энергию термальных источников или энергию приливов и отливов.

Поговорим о том, какие сильные и слабые места есть у каждого из выбранных источников, — а потом рассмотрим эмитентов на бирже, которые могут заинтересовать инвесторов.

Основная идея тут в том, чтобы заменить традиционное топливо на биологическое. На первый взгляд, все прекрасно: биотопливо при сгорании практически не выбрасывает в атмосферу вредных веществ. Но есть другая проблема.

Для производства биотоплива используются либо продукты жизнедеятельности сельскохозяйственных животных, либо сахаросодержащие и масличные растения. При этом мы видим намечающийся тренд на экологичное сельское хозяйство, в том числе и на внедрение в наш рацион искусственного мяса.

Для ведения классического сельского хозяйства необходимо огромное количество воды. По нормам водопотребления в среднем на одну голову крупного рогатого скота необходимо от 70 до 100 литров воды в сутки. А для производства 50—65 м³ биогаза необходимо около тонны навоза крупного рогатого скота. Если брать растительное сырье, то приблизительно с тонны масла получается 200 кг метанола или этанола. К примеру, для функционирования среднестатистического современного комбайна необходимо 5 кг/га топлива. То есть тонны масла хватит примерно на 40 га.

Ниже я привел таблицу производства масла из различного сырья. Увеличение сельхозугодий грозит нам вырубкой лесов, загрязнением подземных вод удобрениями и отходами животноводства. Плюс запас хода автомобиля на таком виде топлива сокращается в среднем на 20—25% .

В итоге можно сделать вывод, что биотопливо или биогаз — это более чистый вид топлива, чем традиционный бензин или дизель, но при его производстве мы сталкиваемся с рядом проблем вроде увеличения посевов или ухудшения эксплуатационных качеств машин, что также влияет на экологию.

В Бразилии очень развито использование таких источников энергии, потому что страна сталкивалась с нефтяными кризисами, а это неплохая альтернатива. Но в Бразилии хорошие климатические условия для выращивания практически всех видов культур. И все равно при этом Бразилию сильно критикуют за проблемы с голодом населения и использование сельхозугодий в неэтичных целях.

Это еще один вид альтернативной энергии, у которого на первый взгляд отличные экологические показатели — в первую очередь полное отсутствие углеводородов при выработке электроэнергии.

Но, во-первых , использование ветряных мельниц возможно не везде, а во-вторых , КПД такой станции оставляет желать лучшего: в среднем он составляет около 30%. По закону Беца максимальный коэффициент использования энергии ветра равен 0,593. Если учесть затраты на преобразование и транспортировку энергии, максимально возможный КПД получится в районе 35—45%.

Это обусловлено длинной цепочкой производства энергии: для питания какого-либо объекта нужна сеть 380/220 вольт переменного тока, а ветряная мельница сама по себе вырабатывает 24 вольт постоянного тока — то есть нужен инвертор, чтобы этот ток преобразовать.

А еще нужно сохранить энергию в моменты, когда она не потребляется, — для этого понадобится аккумуляторная батарея. В каждом из этих звеньев теряется энергия. Одна мельница высотой 10 метров и диаметром ротора 1,5 метра вырабатывает всего около 0,6—0,7 кВт·ч/сутки энергии, в зависимости от интенсивности ветра. Для примера: обычный бытовой холодильник потребляет около 0,3 кВт·ч .

Негативное влияние на окружающую среду тоже есть:

  1. Для ветропарка нужна большая площадь — это может повлечь за собой вырубку лесов, выравнивание ландшафта.
  2. От работы мельниц создаются вибрации на определенной частоте, от которых черви глубже уходят в землю. За счет этого птицам нечем питаться — нарушаются пищевые цепочки.
  3. Необходимо огромное количество батарей для сохранения энергии. Для производства батарей требуются редкоземельные металлы — а добыча этих металлов очень грязная и вредная для окружающей среды.
  4. Кладбище изношенных ветряных лопастей — это огромная проблема. Утилизировать лопасти ветрогенераторов нормально пока не научились.
Читайте также:  Как подключить светодиод к 12 вольтам: расчет сопротивления

По мнению многих, это один из самых экологичных существующих сейчас видов энергии. Суть заключается в принципе фотоэлемента: когда на фотоэлемент попадает свет — не обязательно солнечный, — вырабатывается электроэнергия. Кажется, ну куда уж чище? Но нет. С солнечными электростанциями есть такая же проблема, как и с ветряными.

КПД солнечных электростанций не превышает 25—30% за счет такой же цепочки, как и у ветропарков: нужны инверторы, аккумуляторные батареи для накопления. Еще необходимы большие площади для строительства станций. Одна солнечная панель площадью 7 м² вырабатывает всего 6—7 кВт·ч/сутки . Как мы рассматривали выше, это не так много. Плюс у них существует та же проблема с сохранением энергии, что и у «ветряков».

Еще есть проблемы с эксплуатацией этих станций: град может побить сами панели; полупроводниковые элементы могут перегреваться; необходимо увеличивать сечения проводов — панели нужно ставить в солнечных местах, где температура может быть высокой, а чем выше температура, тем больше сопротивление проводников.

Что с этим всем делать

Я считаю, что наши технологии в альтернативной энергетике еще не готовы к масштабной декарбонизации. Необходимо инвестировать прежде всего в развитие технологий, а не во внедрение существующих во всемирную энергосистему.

В связи с этим я вижу перспективу в атомной энергетике, потому что это один из самых чистых видов энергии, если не считать экстремальных случаев. По данным МЭА, рост использования атомной энергетики к 2040 году составит 28—62% , а по прогнозам BP к 2050 году он составит 42—164% . Разброс большой, так как часть стран, например Китай и Индия, сильно наращивают объемы выработки и вводят новые реакторы в эксплуатацию, а другие страны, например Япония, наоборот, снижают.

Еще большую перспективу я вижу в развитии газовых электростанций. Газ намного чище, чем уголь или нефть, плюс переход ТЭЦ с другого вида топлива на газ наиболее прост в практическом исполнении. Замена угольных мощностей на газовые дает снижение выбросов углекислого газа на 50—70% .

В нашей статье про альтернативную энергетику были представлены графики, по которым видно, что по прогнозам к 2040 году одним из основных источников энергии будет газ, а остальные чистые источники энергии в совокупности будут отставать.

С другой стороны, каждый из перечисленных источников альтернативной энергии очень перспективен в узконаправленных сегментах.

Например, биодизель отлично подойдет для сельскохозяйственной техники, биогаз — для отопления теплиц или помещений для содержания животных, а солнечные панели хороши для электромобилей: электроника в автомобиле работает от постоянного тока 12—24 вольт — КПД такой установки существенно повышается, потому что убираются несколько звеньев цепочки производства.

Обзор компаний

В завершение приведу примеры компаний из каждого рассмотренного в этой статье сегмента альтернативной энергетики. Буду рассматривать только те компании, которые может купить российский инвестор без статуса квалифицированного инвестора и которые я посчитал интересными.

NextEra Energy (NEE) — крупнейшая энергетическая компания по объемам вырабатываемой солнечной и ветровой энергии. Наверное, главный бенефициар от будущей программы Байдена по развитию инфраструктуры, если она будет принята.

Это коммунальная компания — она не производит инновационных вещей и не разрабатывает программное обеспечение. Ее бизнес очень прост, но требует серьезных вложений для расширения. Именно поэтому долг составляет 130% от капитала. Чистая рентабельность, по последним данным, около 14% — это отличный показатель для коммунальщиков, но он существенно снижается: в 2018 году чистая рентабельность составляла порядка 40%, а в 2019 году — 20%.

Вероятно, это связано с ценой на углеводороды, ведь чем выше цена на нефть, газ, уголь, тем выгодней смотрится электричество в качестве их альтернативы. При нынешней цене на нефть у компании неплохие перспективы вновь нарастить свою маржу.

По мультипликаторам компания очень дорогая для сектора коммунальных услуг: P / E = 52,5; P / S = 8,49. При всем этом компания постоянно выпускает новые акции, размывая долю акционеров.

SolarEdge Technologies Inc (SEDG) — израильская компания, которая разрабатывает и производит оборудование для солнечных панелей. Когда Байден только пришел к власти и все альтернативщики полетели в космос, это затронуло компанию, но с каким-то чрезмерным рвением.

Компания стоит 100 годовых прибылей и 9 выручек — и это даже после просадки на 30% от максимумов. Плюс маржа 10% — это, конечно, неплохо, но для компаний с такой оценкой безумно мало. В целом у SolarEdge Technologies хороший планомерный рост от года к году. Выручка и акционерный капитал растут, долг около 60% от капитала. В целом это хороший растущий бизнес, который, скорее всего, и дальше будет развиваться, но уж очень дорого все это стоит.

First Solar Inc (FSLR) — по моему мнению, это та самая компания, в которую пойдет львиная доля вложений от плана Байдена. Она создает тонкопленочные солнечные панели, и это в целом довольно перспективная технология. У компании очень нестабильные финансовые потоки, но при этом нет долгов.

Уже в этом году они показали маржу 15%, а если добавить сюда госзаказы, получится очень хорошая схема. P / E = 21, тут все неплохо, но немного высоковат P / S — 3,12. Если руководство компании сможет выиграть тендеры и заключить хорошие контракты с государством, то и финансовые показатели улучшатся, и капитализация компании будет расти. Но здесь много рисков: на этом рынке появляется много игроков.

Renewable Energy Group Inc (REGI) занимается производством биодизеля. За год компания сделала уже более 200%, а на мартовских пиках и вовсе показывала прирост более 350%. Даже сейчас по мультипликаторам компания не выглядит сильно дорогой: P / E = 23, P / S = 1,35. Net Profit Margin около 6%, что тоже является средним по рынку.

Читайте также:  Настольная лампа (своими руками): из подручных материалов, оригинальные идеи

С 2014 года у компании росла выручка, и только в 2020, коронавирусном году она снизилась, но компания осталась прибыльной. На самом деле это очень нишевый бизнес, и любой сельскохозяйственный производитель может создавать для себя биодизель — например, Archer Daniels Midland Company (ADM) так и делают. Потребление биодизеля, скорее всего, сильно расти не будет, но свою нишу Renewable Energy заняли и уже из нее никуда не уйдут.

TPI Composites (TPIC) производят лопасти для ветрогенераторов. Компания убыточна, но выручка растет большими темпами. По P / E мы ее оценить не сможем, но P / S = 1,17 — это хороший показатель. Капитализация компании всего 2 млрд долларов — и если вы верите в этот стартап, то можно надеяться на хороший результат. И это еще одна американская компания, которая должна выиграть, если план Байдена будет принят. На данный момент компания в просадке на 30% от максимумов февраля, и, возможно, это хороший момент для входа.

Солнечные батареи – альтернативная энергия

Независимый от сторонних ресурсов источник электрической энергии – это солнечная батарея. Для её функционирования нужен только свет центральной звезды нашей системы планет. Установки применяются повсеместно и стремительно набирают популярность, составляя конкуренцию центральным ЛЭП. Комплект солнечных батарей для частного применения можно приобрести в сборке и пользоваться энергией светила по своим потребностям.

Необходимая альтернатива

Солнечные панели изначально предназначались как альтернативный источник получения электричества для снабжения местности, где отсутствует линия электропередачи или поставки ресурса не являются постоянными и зависят от ряда факторов. Так батареи активно применяются:

  • В отдалённых и не электрифицированных регионах с достаточной инсоляцией;
  • В многоквартирных домах, в социальных учреждениях и на предприятиях в качестве резервного источника электроснабжения;
  • В сельской местности солнечная электростанция дополняет автономное энергоснабжение;
  • Энергия Солнца иногда используется как средство нагрева воды в системах отопления и водоснабжения;
  • Космические станции работают на преобразованной солнечной энергии.

Полученное электричество расходуется на необходимые нужды: освещение, работа бытовых приборов и производственного оборудования, снабжение котельных установок.

Сфера применения систем переработки солнечной энергии на сегодняшний день обширна по нескольким причинам:

  • В комплекте предусмотрен аккумулятор, в котором накапливается энергия, он может быть использован в «тёмный» период или во время отключения основной центральной сети.
  • Отсутствие потребности в сторонних ресурсах, система сама себя обеспечивает. При использовании несколькими абонентами быстро окупается в пересчёте на оплату услуг электроснабжающих организаций.
  • Независимость от внешних факторов, кроме погодных условий. Солнечные батареи будут действительно полезны в регионах, где солнце всё же посещает поверхность Земли.
  • Долгосрочность работы – при правильном уходе и своевременном обслуживании до 20 лет.

Устанавливаются комплекты на отдельные стенды или на крыше дома с солнечной стороны.

Системы солнечных батарей в виду востребованности и создания конкуренции в отрасли заметно упали в цене за последнее десятилетие. При покупке комплекса для частного дома, электричеством в котором будет пользоваться семья из 4-х человек, отбить затраты можно уже через 3,5-4 года.

Разновидности преобразователей и их эффективность

Любая солнечный панель преобразует свет Солнца посредством инвертора – ключевого компонента системы. Он видоизменяет энергию в постоянный ток, который трансформируется модулем в переменный со стандартным напряжением 220 В, необходимым для работы большинства приборов.

Мощность инверторов варьируется в пределах 250…8000 Вт, что необходимо учитывать при выборе. Чем больше максимальная нагрузка напряжения в цепи, тем мощнее должен быть преобразователь.

Самые востребованные соотношения напряжения и мощности для частного хозяйства, жилых домов:

  • 12 В и 600 Вт;
  • 24 В и 600…1500 Вт;
  • 48 В и ≥1500 Вт.

По организации работы преобразователи делятся на несколько видов:

  • Автономные работают внутри единого контура без посторонних ресурсов. Их производительность должна быть рассчитана максимальной нагрузкой на цепь и принята с небольшим запасом для возможности скачка напряжения из-за включения техники-потребителя.
  • Синхронные вырабатывают энергию, накапливают её, а свыше нормы отправляют в электрифицированную сеть. Обнаруженный недостаток в конденсаторе (аккумуляторе) восполняется обратным забором из сети преобразователем. Такая система помогает предотвратить перебои в центральной системе, используется как резерв.
  • Комбинированные системы сочетают функции автономного и синхронного преобразователя.

Преобразователь в комплекте с солнечными батареями для дома создаёт на выходе качественно разные сигналы напряжения, от которых зависит и стоимость устройства:

  • Синусоидальные, самые дорогие, образуют высококачественный ток для подключения крупной бытовой техники – кондиционеров, холодильников, котлов;
  • Прямоугольные служат для питания небольших приборов, например, освещения и других совместимых устройств. Стоимость такого преобразователя сравнительно низкая;
  • Псевдосинусоидальные – это середина между прямоугольными и синусоидальными системами и по качеству, и по цене. К такому можно подключить любую бытовую технику, но качество передачи значительно ниже, чем у первого варианта.
  • Фотоэлектрические (полупроводниковые) преобразователи(ФЭП), трансформирующие солнечную энергию напрямую в электрическую. Несколько объединённых ФЭП – это солнечная батарея.
  • Гелиоэлектростанции (ГЕЭС)установки, работающие на высококонцентрированном излучении для активизации тепловых машин и промышленных установок.
  • Солнечные коллекторы (СК) – это нагревательные установки низкотемпературного типа.

Как солнечную батарею выбрать

При необходимости в использовании автономного источника электроэнергии в первую очередь необходимо рассчитать предполагаемую нагрузку на сеть и определить мощность установки. Благо, производители предлагают готовые системы с солнечными батареями в комплекте и достаточно определить только несколько основных параметров:

  • Мощность и размер панелей;
  • Производительность установки;
  • Требования батарей к инсоляции и температурному режиму.

Разновидности готовых модулей:

  • Монокристаллические из силиконовых ячеек-преобразователей. Они отличаются компактностью и высокой эффективностью – до 22%, соответственно самой высокой стоимостью.
  • Поликристаллические с кремниевым компонентом в составе рабочих секций. Их эффективность не превышает 18%, что ненамного меньше, чем у монокристаллических модулей, но стоимость значительно отличается в меньшую сторону, поэтому такие солнечные батареи выбирают для дачи и частного дома.
  • Аморфные с тонкоплёночными кремниевыми фотоэлементами самые низкоэффективные и одновременно дешёвые. Но у них есть отличительная особенность – способность вырабатывать электричество при малой инсоляции.

Любые панели комплектуются в готовую систему в сопровождении следующего оборудования:

  • Инвертор (преобразователь), трансформирующий свет в электричество;
  • Аккумулятор, накапливающий энергию, он же нивелирует перепады напряжения;
  • Контроллер аккумуляторного напряжения, зарядки и прочих параметров.

Укомплектовать комплекс можно самостоятельно или приобрести его в сборке, где оборудование подобрано правильно с учётом мощностных особенностей каждого компонента.

Монтаж комплекса следует доверять профессионалам – щиты необходимо устанавливать аккуратно посредством специального крепежа.

Все, что нужно знать о солнечных панелях

Вы хотите сэкономить на электричестве либо иметь дополнительный и независимый источник альтернативной энергии? А может, вы являетесь сторонником зеленой энергетики? Если так, то солнечные панели – тема для вас.

Энергия Солнца, или что такое солнечные панели

Солнце – главный источник энергии для всего живого и самой нашей планеты. Причем количества энергии, поступающей на Землю за каких-то 40 минут, хватает, чтобы удовлетворить энергетические потребности всех жителей земного шара в течение года. Учитывая возобновляемые и практически безграничные ресурсы небесного светила, перспективы его использования велики. Тем более что из всех альтернативных источников энергии именно солнечная признана самой безопасной и экологически чистой. Поэтому сегодня энергия солнца становится все более востребованной в самых разных сферах жизнедеятельности человека.

Воспользоваться этим даром природы людям помогают специальные устройства – солнечные панели (или солнечные батареи). Они преобразуют бесплатную энергию Солнца в электрическую и приобретают возрастающую популярность по всему миру.

Солнечные панели – из истории создания

Идея преобразования бесплатных солнечных лучей в энергию, которая будет работать на благо человека, будоражила людей давно. Так сложилось, что первым решением исторически стали солнечные термальные электростанции или солнечные коллекторы, которые принципиально отличатся от солнечных батарей (о принципе действия коллекторов коротко расскажем ниже). Солнечные же панели стали по факту второй и достаточно удачной попыткой человечества преобразовать энергию солнца в другой вид энергии, которая может использоваться для электроснабжения разного рода жилых, нежилых и хозяйственных обьектов.

И хотя солнечной энергетике не так много лет, ее развитию предшествовал целый ряд открытий и разработок. Но настоящий прорыв в направлении использования энергии света случился в середине 19 века, когда французский ученый Александр Эдмон Беккерель открыл явление фотоэлектрического эффекта. В 1873 году английский инженер-электрик Уиллоуби Смит обнаружил эффект фотопроводимости в селене, а несколькими годами спустя американец Чарльз Фриттс сконструировал первый фотоэлемент, состоящий из тонкого слоя селена, расположенного между пластинками золота и меди, и имевший эффективность всего 1%.

В 1987 году Генрих Герц открыл внешний фотоэффект, а в 1889 году русский Александр Столетов, в экспериментальной установке которого потек электрический ток, рожденный световыми лучами, описал закономерности фотоэффекта. Позднее к этому «приложил руку» и Альберт Эйнштейн. В начале 20 века он объяснил фотоэлектрический эффект на основе квантовой теории, за что впоследствии даже получил Нобелевскую премию. А первые прототипы солнечных панелей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном. В дальнейшем научные изыскания в области полупроводников привели к синтезированию кремниевых фотоэлементов с КПД 4%. Эта инновация была сделана в 1954 году в лаборатории компании «Bell Telephone». Позднее их эффективность увеличили до 15%, и солнечные батареи были впервые использованы в сельской местности и отдаленных городах как источник питания для системы телефонной связи, где они успешно использовались на протяжении многих лет. Еще через несколько лет в космос были запущены спутники с использованием солнечных батарей. Впоследствии были разработаны и созданы фотоэлементы на основе других полупроводников.

Чем отличаются солнечные панели от солнечных коллекторов

Как мы уже писали выше, солнечные коллекторы человечество придумало раньше, чем солнечные панели. Это совершенно разные устройства, хотя оба преобразуют энергию Солнца и в названии имеют слово «солнечный». На этом, пожалуй, их общность заканчивается. А теперь рассмотрим различия.

Если сказать коротко, то при использовании солнечных коллекторов потребитель «на выходе» получает тепловую энергию в виде нагретого теплоносителя, а солнечные панели предназначены только для генерации электрического тока.

Солнечные панели непосредственно преобразуют энергию солнца в электричество при помощи фотоэлементов (ФЭП – фотоэлектрических преобразователей или солнечных элементов).

Солнечный коллектор – это гелиоустановка, задача которой собирать и передавать тепловое излучение теплоносителю, который циркулирует через коллектор. В свою очередь, теплоноситель нагревает емкость, где находится вода для обеспечения горячего водоснабжения. То есть в отличие от солнечных панелей, солнечный коллектор производит нагрев материала-теплоносителя, а затем накопленная энергия используется для определенных целей (нагрева воды, работы отопительной системы, промывочных работ). Попросту говоря, солнечные коллекторы производят горячую воду.

Принцип работы солнечных панелей

Солнечные панели предназначены для преобразования энергии Солнца в электрическую. Их также называют солнечными батареями или солнечными модулями. Солнечная панель представляет собой устройство, состоящее из фотоэлементов, которые как раз и занимаются преобразованием одного вида энергии в другой. Фотоэлементы – это полупроводниковые пластины, напрямую преобразующие солнечное излучение в электрический ток. Между собой фотоэлементы соединяются в параллельные или последовательные электрические цепи, которые в совокупности работают как единый источник электрического тока.

Фотоэлементы изготавливают из разных элементов, но наиболее распространены солнечные элементы на основе кремния. Именно их выпускают в промышленных масштабах. Реже используют кадмий, теллур, селениды меди, аморфный кремний. Еще меньший процент – порядка 10%– составляют тонкопленочные солнечные элементы (например, CdTe).

Если говорить о кремниевых ФЭП, то каждый из элементов представляет собой тонкую пластину, состоящую из двух слоев кремния с собственными физическими свойствами, которые соединены между собой. Поскольку речь идет о полупроводниках, слои должны иметь разную проходимость для того, чтобы свободные электроны беспрепятственно переходили из одного слоя в другой. Ведь полупроводник – это материал, в атомах которого либо не хватает электронов (p-тип), либо есть лишние электроны (n-тип). Как правило, верхний слой – отрицательный (n-слой), он используется в качестве катода, а нижний слой – положительный (p-слой), он представляет собой анод. Излишек электронов из n-слоя может покидать свои атомы, тогда как p-слой эти электроны захватывает. Вот как раз солнечные лучи и выступают катализатором такой реакции – «выбивают» электроны из атомов n-слоя, а затем они летят занимать пустые места в p-слой. То есть при попадании на фотоэлемент частиц света (фотонов) из-за неоднородности кристалла между слоями полупроводника образуется вентильная фотоэлектродвижущая сила.

В результате этого возникает разность потенциалов и ток электронов, которые движутся по замкнутому кругу, выходя из p-слоя, проходя через внешнюю нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой. Таким образом, принцип работы солнечной панели напоминает своеобразное колесо, по которому вместо белки «бегают» электроны. При этом аккумулятор постепенно заряжается.

Верхний слой пластинки-фотоэлемента, который обращен к Солнцу, делается из кремния, но с добавлением фосфора. Он и становится источником избыточных электронов в системе p-n-перехода.

Виды пластин фотоэлементов

По технологии изготовления кремниевые пластины ФЭП бывают двух видов: монокристаллические и поликристаллические. Монокристаллические выполняются в виде квадрата со скошенными углами, поликристаллические – ровные квадраты. Но форма – не главное их различие.

Монокристаллические ФЭП делают из искусственно выращенного цельного кристалла кремния. А поликристаллические получают достаточно простым и недорогим методом постепенного охлаждения расплавленного кремния.

Поэтому монокристаллические фотоэлементы имеют однородную структуру и более высокий коэффициент полезного действия (КПД). Однако себестоимость их производства выше, они дороже, чем поликристаллические пластины.

Минусом поликристаллических пластин является их невысокая производительность – не больше 15%. Это связано с их недостаточной чистотой и внутренней структурой. КПД монокристаллического фотоэлемента достигает уже 20-25%.

КПД солнечных панелей

Стандартные фотоэлементы из кремния – однопереходные, то есть переток электронов осуществляется только через один p-n-переход, зона которого ограничена по энергии фотонов. Это означает, что каждый отдельно взятый ФЭП может производить электроэнергию лишь от лучей определенного узкого спектра. Остальная энергия света пропадает впустую. Это и является основной причиной не очень высокой эффективности фотоэлементов.

КПД солнечных панелей сегодня пытаются повысить разными способами. К примеру, одно из решений – каскадные (многопереходные) кремниевые элементы. Каждый из таких ФЭП имеет несколько переходов и рассчитан на определенный спектр солнечных лучей. В сумме эффективность преобразования лучей света в электрический ток увеличивается, а с ним и производительность панели в целом. Однако цена таких элементов выше, чем однопереходных. Поэтому в каждом конкретном случае потребитель должен решать дилемму, что ему важнее – цена или энергоэффективность.

Обычно число фотоэлементов в одной солнечной панели кратно 12, а номинальная мощность одного такого устройства составляет от 30 до 350 Вт. Наиболее низким КПД, от 5% до 10%, обладают аморфные, органические и фотохимические ФЭП. Такая панель площадью 1м 2 будет вырабатывать от 25 до 50 Вт/ч электроэнергии. КПД самых распространенных сегодня кремниевых солнечных батарей составляет 17 – 25%. Это означает, что на 1м 2 площади панели генерируется до 125 Вт/ч. Вообще же, разработчики по всему миру сегодня работают над увеличением КПД до 30%, и такие решения уже есть. Например, солнечные панели на основе арсенида галлия. Именно они способны составить конкуренцию кремниевым панелям, а при площади 1м 2 такая панель даст электроэнергии в объеме 150 Вт/ч.

Что влияет на энергоэффективность солнечных панелей?

Энергоэффективность – важный показатель солнечных панелей. Для примера, один фотоэлемент (одна пластина) способен при солнечной погоде произвести энергию, которой будет достаточно лишь для зарядки карманного фонарика. Поэтому когда речь идет о более серьезных масштабах генерирования электроэнергии, ФЭПы обычно объединяют в цепи (параллельное соединение – для увеличения напряжения, последовательное – для увеличения силы тока). Их количество и структура во многом определяют энергоэффективность панелей. Кроме того, на энергоэффективность гелиопанелей влияет такие факторы:

  • мощность светового потока;
  • угол падения солнечных лучей;
  • правильный подбор сопротивления нагрузки;
  • температура окружающего воздуха и самой панели;
  • отсутствие или наличие антибликового покрытия элементов.

Например, солнечный элемент и сама панель во время работы постепенно нагреваются. Та часть энергии, которая не пошла на производство электрического тока, трансформируется в тепло. Поэтому часто температура на поверхности панели может достигать значений более 50Сº. Однако чем выше температура поверхности, тем хуже работает фотоэлемент. Это значит, что одна и та же панель в разную погоду работает по-разному: менее эффективно в жару, и более эффективно в холод, а максимальную эффективность показывает в солнечный морозный день.

Преимущества и недостатки солнечных панелей

Как и любое устройство, солнечные панели имеют свои преимущества и недостатки.

Преимущества солнечных панелей

  • Неиссякаемость, возобновляемость и всеобщая доступность источника энергии, что важно особенно в условиях истощения других видов природного топлива (нефть, газ, уголь).
  • Экологичность. Солнечные электростанции действительно относятся к наиболее экологически чистым видам производства электроэнергии. При работе они не выделяют вредных примесей в воздух, работают бесшумно в сравнении с ветряками. Единственно к чему можно придраться, как и с электрокарами, так это к тому, что при производстве самих панелей, аккумуляторов, электростанций и различных проводников используются токсичные вещества, которые загрязняют окружающую среду.
  • Экономичность – солнечные панели дают возможность экономить электроэнергию и, соответственно, деньги. Ведь для выработки электричества применяются солнечные лучи, которые абсолютно бесплатны.
  • Износостойкость и большой срок службы. Гарантийный срок обычно составляет 25–30 лет, но фотоэлектростанция не прекратит свою деятельность и после этого периода. Износ происходит очень медленно, особенно если нет подвижных частей.
  • Одномоментность переработки солнечной энергии в электрическую.
  • Выработка энергии не только в солнечную, но и в пасмурную погоду.
  • Возможность автономизации системы энергоснабжения объекта и независимость от централизованного электроснабжения.
  • Простота, стабильность, надежность конструкции и ее монтажа.
  • Можно нарастить конструкцию, если есть необходимость увеличения мощности системы это легко сделать благодаря модульности солнечных панелей.

Недостатки солнечных панелей

  • Высокая стоимость и длительный период окупаемости (до 10 лет).
  • Невысокий КПД.
  • Низкая энергоэффективность в пасмурную погоду и ночью.
  • Неравномерная выработка электричества, которая зависит от освещенности и погоды. Это можно компенсировать, если подключить систему к сети – тогда днем можно будет продавать излишнее электричество электрокомпании, а ночью использовать централизованное электроснабжение.
  • Большие размеры. Панели занимают много места – для их установки требуется наличие значительных площадей. Они могут занимать, например, всю крышу и стены строения.
  • Сложность использования в регионах с большим количеством осадков, особенно снега.
  • Потребность в установке дополнительных устройств для получения переменного тока (солнечные панели производят только постоянный ток) и для накопления энергии (потому что электричество вырабатывается только на протяжении светового дня).

Где применяются солнечные панели

По мере развития технологий, совершенствуется и солнечная энергетика. Гелиопанели становятся дешевле и эффективней, разрабатываются новые инженерные решения, расширяется сфера их сфера применения. Из солнечных панелей создают целые солнечные электростанции (СЭС), которые могут производить электроэнергию в больших масштабах. Поэтому сегодня солнечные панели применяют не только в быту, но также в промышленности, сельском хозяйстве, космической отрасли и дорожном строительстве. Солнечная энергия используется для уличного освещения, электрокаров, электромоторных судов и других видов транспорта, в частных домовладениях, смартфонах и разных гаджетах, в детских игрушках и даже в устройствах для барбекю. Но судя по всему, это далеко не предел, и сферы применения солнечных панелей будут развиваться еще активнее и все больше входить в нашу жизнь.

Оставьте комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Люстры

Последние отзывы в категории люстры

Популярные бренды в категории люстры

Достоинства:

Недостатки:

Комментарий:Обратилась в магазин после разочарований в известных мебельных. Кровать Garda 160х200 серого цвета с подъемным механизмом действительно лучшее, что я покупала. Пользуюсь месяц, ни намека на скрип или поломки.

Достоинства:Представляют качественный выбор во многих категориях. На данный момент мой первый и успешный заказ – полка Valga серо-коричневого цвета. Все как-то организованно легко и спокойно, на курьерскую доставку и на консультантов вполне можно положится.

Недостатки:

Комментарий:

Достоинства:Внушительный каталог очень интересной мебели. Уже стеллажик очень стильный купили, а хочу еще больше!

Недостатки:

Комментарий:Аккуратно провели доставку, и по времени так как мне подходило, чтобы ничему из запланированного на день доставка не помешала.

Достоинства:Мы рабочее место полностью обставили без труда.

Недостатки:

Комментарий:Подошли с умом и это нравится больше всего. Удобно было заказывать и получать, а до этого выбирать, потому что на сайте масса видео с дизайном и в подборках тоже можно идей набраться.

Достоинства:

Недостатки:

Комментарий:Ваш магазин в который раз выручает. Дизайнерскую мебель заказываю только здесь. Широкий выбор мебели отменного качества. С доставкой проблем никогда не было. Курьеры помогли всё собрать, благодарна им за это.

Достоинства:

Недостатки:

Комментарий:Не один раз делала здесь покупки и всегда все гладко проходило. Вот на прошлой неделе кресло заказывала, во вторник. А в четверг уже все доставили. Модель классная, интересная, качество хорошее и по цене вполне нормально. В интерьер комнаты вписалось идеально. Короче, довольна, как и всегда. Спасибо и до встречи.

Достоинства:Всерьез не готова снижать оценку магазину в принципе потому что все вопросы и недопонимания решают за одно обращение. Поддержали мои поиски идеального зеркала без тени упрека и вовремя доставили настенное зеркало Сканди Орех. Я довольна неторопливым и спокойным стилем работы всего персонала.

Недостатки:

Комментарий:

Достоинства:

Недостатки:

Комментарий:Благодарим за быструю доставку. Как мы и хотели. Получили мебель в выходным и к нашему новоселью))) Спасибо)))

Достоинства:

Недостатки:Нет замечаний, все хорошо.

Комментарий:Спасибо за кровать Garda 160х200 серого цвета с подъемным механизмом. И смотрится отлично, и ценник понравился. С доставкой проблем не было, все Ок.

Достоинства:

Недостатки:

Комментарий:Мне понравилось, что нет проблем с поиском кресел и нет проблем с выбором цвета и моделей. Кресло Роберт Людвиг желтого цвета стало моим любимым с первого взгляда на каталог. Сегодня получила свое кресло и убедилась в том, что сделала правильный выбор. Итак, плюсы: выбор, стоимость, сроки и доставка.

Здесь можно купить красивую люстру в комнату разных размеров по цене от 1 690 руб.

Преимущества маркетплейса дизайнерской мебели INMYROOM

Широкий ассортимент люстр

В наличии люстры по цене от 1 690 рублей. Более 60 000 предметов мебели и интерьера. 390+ брендов красивой и дизайнерской мебели.

Гарантия на люстру

Выбираем только надежных партнеров и тщательно следим за качеством. На люстру действует гарантия от производителя и собственная система контроля качества INMYROOM.

Помощь в подборе

Наши дизайнеры бесплатно подберут люстру с учётом вашего интерьера и планировки. В случае необходимости предложат альтернативную замену из широкого ассортимента INMYROOM.

Быстрая и качественная доставка в Москве

Доставляем покупки 7 дней в неделю. Точную стоимость и сроки доставки в Москве уточняйте у вашего менеджера. Возможна доставка в другие регионы РФ и страны СНГ.

Легкий возврат и обмен

Вы можете вернуть люстру в течение 7 календарных дней с даты получения в Москве.

Услуга складского хранения

Мы предлагаем хранение на собственном складе, если вы заказали у нас люстру, а ремонт еще не окончен. Тарифы уточняйте у менеджера INMYROOM.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: