Схема блока питания на 12 вольт: поэтапная инструкция для самостоятельного изготовления

Характеристика и как сделать своими руками трансформаторный блок питания на 12В

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

  1. Устройство и принцип работы
  2. Общая структура
  3. Трансформатор
  4. Конструкция
  5. Принцип работы
  6. Выбор напряжения
  7. 12В
  8. 3.3 В
  9. Выпрямитель
  10. Используем мостовую схему выпрямления
  11. Как работает
  12. Как спаять
  13. Фильтр
  14. Назначение
  15. Выбор конденсатора
  16. Как правильно подключать
  17. Стабилизатор напряжения или тока
  18. Стабилитрон
  19. Интегральный стабилизатор напряжения
  20. Серия LM 78xx
  21. Серия LM 79xx
  22. Вспомогательные узлы
  23. Индикаторные светодиоды
  24. Амперметр и вольтметр
  25. Схема самодельного источника питания
  26. Как паять
  27. Правила выбора комплектующих

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Читайте также:  Ремонт выключателя света в квартире своими руками: разновидности и причины поломок

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Блок питания своими руками

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Читайте также:  Что такое проходной выключатель: как работает, какие бывают виды

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «

», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Читайте также:  Устройство выключателя: принцип работы и конструктивные варианты исполнения

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Полезная покупка для самодельщиков: б/у, но годный блок питания на 12 В 5 А

Рано или поздно перед самодельщиками встает вопрос – от чего питать самоделку, светодиодную ленту и т.д. Можно мастерить блок питания самостоятельно, можно купить новый, готовый. Есть несколько «народных» блоков, хорошо себя зарекомендовавших. Однако есть еще вариант – покупка блоков питания бывших в эксплуатации, но все еще обладающих хорошими характеристиками. На этот раз мне попался блок на 12 Вольт и аж 5 Ампер.

Запас по мощности нужно иметь всегда, даже если устройство потребляет 2,3,4 Ампера. Вполне блок подойдет и для питания популярного паяльника TS100 или появившегося недавно SH72.

Как всегда, для начала характеристики:

— входное напряжение: AC 100V-240V 50-60Hz
— выходное напряжение: DC 12V
— выходной ток: 5A
— выходная мощность: 60 Вт
— рабочая температура: -30 — + 85 C
— размер: 10,2 x 4,5 x 2,6 см

Уже заказывал б/у блоки питания, все они оказались рабочими и всегда приезжали в простых пластиковых пакетах. Не стал исключением и этот образец.

О том, что блок б/у говорят обрезки входных и выходных проводов. Однако грязи и пыли нет совсем, а значит прежде блок эксплуатировался в закрытом корпусе. Судя из названия лота, прежде блок обеспечивал питанием монитор.

Массивные компоненты блока зафиксированы «герметиком» и легко пережили дорогу. Немного досталось одному радиатору. Он крепится к плате штырьками, которые впаиваются в плату. Видимо в дороге где-то прижали, радиатор наклонился внутрь блока и повредился участок дорожки под пайкой. Проблема небольшая и легко поправимая.

Габаритные размеры платы практически соответствуют заявленным.

Все платы б/у блоков, что мне попадались, были сделаны из гетинакса и не имели креплений под винты так, как в корпус вставлялись по направляющим и прижимались крышкой.

Блок аккуратно собран, следы флюса есть только в местах ручной пайки проводов. Легко заметить, что высоковольтная (горячая) часть схемы отделена от «холодной» части промежутком шириной приблизительно один сантиметр без каких-либо проводников. Как бонус, остались резиновые уплотнители на нижней стороне платы. Под оптопарой, которую увидим позже, традиционно сделана прорезь в плате. Это не вентиляция, это защита от дуги в случае пробоя оптопары. Маркировку ШИМа рассмотреть не удалось, затерта царапинами.

Входной фильтр имеет не один, а два дросселя, что плюс. Есть варистор и конденсатор Х2 типа. Кроме того, в наличии предохранитель, который в моем случае оказался оторван с одной стороны, но легко был восстановлен. Под термоусадкой на нем нашлась надпись 3,15 ампер 250 Вольт.

Все конденсаторы в схеме блока питания установлены от известного производителя Jamicon. Выходной фильтр набран из трех конденсаторов (1000, 1000 и 470 мкФ. Все на 16 Вольт) и дросселя.

Чтобы рассмотреть входной конденсатор, транзистор, сдвоенные диоды и межобмоточный конденсатор пришлось открутить и выпаять радиаторы. Места контакта корпусов транзистора и сдвоенных диодов оказались промазаны термопастой. Под диодами не по всему пятну, но есть.

Выпрямитель построен на диодной сборке KBP206 на 600 Вольт и 2Ампера, вполне достаточных в данном случае.

Помехоподавляющий конденсатор Х2 типа емкостью 0,47 мкФ.

В качестве высоковольтного полевого транзистора FTA06N60D в изолированном корпусе.

Межобмоточный конденсатор применен, как и положено, Y1 типа, которые в случае нештатной ситуации не замыкаются, а разрушаются.

Сняв радиатор, можно рассмотреть маркировку оптопары и прорезь в плате. Здесь применили широко распространенную PC817.

Сдвоенные диоды Шоттки MBR20100CT с максимальным током через один диод 10 Ампер.

Чтобы рассмотреть маркировку сглаживающего конденсатора выпрямителя, пришлось его вызволять из герметика и выпаивать. Заявленная емкость 82 мкФ при питании от сети 220 Вольт взята даже с приличным запасом, исходя из соотношения 1 мкФ на 1 Вт мощности.

Так, как блок б/у и работал в тесном корпусе, то параметры конденсаторов могли и измениться. Поэтому проверил все электролитические конденсаторы с помощью мультифункционального тестера ТС-1. В результате ни одного плохого конденсатора не нашел – емкость, ESR и утечка оказались на нормальном уровне.

82 мкФ 400 Вольт

Два конденсатора выходного фильтра по 1000 мкФ 16 Вольт показали практически одинаковые результаты.

А емкость конденсатора на 470 мкФ 16 Вольт оказалась даже выше заявленной.

Рядом с трансформатором и одним из радиаторов установлены еще два конденсатора по 10 мкФ 35 Вольт, которые оказались так же хорошими, несмотря на «теплое» соседство.

На холостом ходу блок ведет себя тихо, напряжение на выходе стабильно держится на уровне 12,18 Вольт.

Тестировал блок токами 1, 3 и 5 Ампер по полчаса.

При токе нагрузки 1 Ампер напряжение на выходе снизилось всего на 0,07 Вольт, а температура нагрева составила всего 38 градусов, что для данного блока скорее «разминочный» режим.

При токе 3 Ампера напряжение на выходе составило ровно 12 Вольт. Радиатор с диодами Шотки нагрелся до 51 градуса, что также абсолютно не критично.

При токе 5 Ампер напряжение немного просело, но виной тому скорее провода, щупы и крокодилы, да и назвать просадку критической нельзя. Ток в 5 Ампер блок держит, нагревшись всего до 67 градусов.

Максимум, при моем способе тестирования и коммутации, мне удалось снять с блока 5, 166 Ампер. Далее блок уходит в защиту со снижение напряжения до нуля, а его работа возобновляется после снятия нагрузки. Аналогичным образом блок ведет себя при коротком замыкании на выходе. И по всему диапазону нагрузок блок ведет себя тихо, без писка и наводок на радио.

И в завершении провел измерение уровня пульсаций.

Общепринятая методика подразумевает пайку дополнительных конденсаторов емкостью 1000 мкф и 0,1 мкф (керамика) непосредственно на выход блока питания и измерение пульсаций на их выводах.

Измерения проводились на холостом ходу и под нагрузкой 1, 3 и 5 Ампер при закрытом входе осциллографа, 10 мВ/деление и 10 µS развертки. Пульсации на выходе даже при 5 Амперах нагрузки не превысили 12 миллиВольт.

Увеличил развертку до 10 миллисекунд и получил результаты, так же сильно не отличающиеся от предыдущих. Максимум 18 миллиВольт.

Столь низкие пульсации заставили сомневаться, но многократно проведенные тесты других результатов не дали.

Уже из спортивного интереса отпаял дополнительные конденсаторы и вновь провел измерения при 10 мВ/деление и 10 µS развертки.

Читайте также:  Установка выключателя света (4 шага для монтажа на стену)

И в этом случае при максимальной нагрузке пульсации не превысили 30 миллиВольт.

При 10 мВ/деление и 10 миллисекундах развертки результаты оказались практически такими же, лишь удалось посмотреть характерную для импульсных блоков форму пульсаций на выходе.

Прежде уже имел дело с б/у блоками питания из магазина Banggood. Тогда это были блоки на 12 Вольт 2 Ампера и 12 Вольт 2,5 Ампера. Эксплуатирую их уже два года, и нареканий нет. Они так же отличаются стабильностью параметров и низкими пульсациями.

Однако порой требуется питать устройства с бОльшим током потребления и в этом случае обозреваемый блок более выгоден так, как в два раза мощнее.

Пару слов о ценнообразовании. Блоки доступны лотами по одному, три и пять штук. Если не планируется питать несколько устройств, то можно купить и один. Но если есть необходимость и планы использовать несколько блоков, то выгоднее купить лот из пяти блоков.

Подводя итог, можно говорить о честно заявленных характеристиках лота. Блок уверенно держит 5 Ампер при практически неизменном напряжении на выходе. Есть небольшой запас по мощности, наличие защиты по КЗ и перегрузке по току. Блок работает тихо и без наводок на радио. Ну, и большой плюс за низкие пульсации, низкую температуру нагрева, алюминиевые радиаторы и возможность не тратить время на построение источника питания для своих проектов.

Блок питания

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

Каждый, кто захочет сможет изготовить 12 – ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник .
Шаг 1: Какие детали необходимы для сборки блока питания .
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок .
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В – 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ – 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты .
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие .

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку – типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 – 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Читайте также:  Как работает датчик движения: инфракрасный для включения света, разновидности

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения .
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы – отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 – ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания
  • Схемы защиты источника постоянного напряжения DC
  • Защита от перенапряжения
  • Схема блока питания 13,8V/20A
  • Зарядное устройство 12V
  • Зарядка от источника питания 13.8V
  • Схема блока питания 28V/20A
  • Источник питания для усилителя низкой частоты с низким уровнем шума
  • Аудиофильский фильтр по питанию
  • Блок питания 13.8V / 10А
  • Схема блока питания 13.8V/40A
  • Источник питания 13.8V, ток 25A
  • Схема блока питания 28V / 50A
  • Регулируемый источник питания 1.25V-25V / 2.5A
  • Схема блока питания 24В/5В DC/DC
  • Преобразователь напряжения DC/DC с низкого напряжения на высокое
  • 0-30V 3A схема регулируемого источника питания
  • Схема. Регулируемый блок питания с пределами выходного напряжения от 2V до 36V 10A
  • Блок питания 13.8V 23A на полевых транзисторах (MOSFET)
  • Схема. Источник питания 20A
  • Источник питания с умножением напряжения
  • Блок питания 13.8V / 30A на мощном полевом транзисторе
  • Источник питания 30A на мощном полевом транзисторе
  • Схема блока питания 12V / 20A с использованием транзистора PNP структуры
  • Схема источника питания 13.8V 20A с применением N-канального полевого транзистора BUZ11
  • Контроль потребляемого тока от источника DC
  • Применение дополнительной фильтрации питающего напряжения – 100dB
  • Маломощный умножитель напряжения DCDC 12V до 138V
  • Блок питания с цифровым LCD дисплеем
  • Конвертер напряжения с 1.5V на 5V 200mA
  • Регулируемый блок питания (преобразователь) с 5V на +/-15V
  • Блок питания с регулировкой 30.5V / 1A
  • Блок питания 22 ампера 13,8 вольт на транзисторах КТ819А
  • Источник питания 13.8V / 20A с защитой
Читайте также:  Схема подключения выключателя (пошаговая подробная инструкция)

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Как устроены и работают инфракрасные датчики движения

Инфракрасный датчик движения – это электронное устройство, способное реагировать на изменение интенсивности фонового теплового излучения в зоне его действия. Тепловым излучением обладают абсолютно любые объекты, а не только человек.

Если объект достаточного размера перемещается с достаточной скоростью, пересекая рабочую зону такого датчика, то происходит срабатывание, и датчик подает сигнал на электронную схему управления для выполнения того или иного действия тем или иным устройством. Таким устройством может быть как выключатель или регулятор освещенности помещения, так и охранная сигнализация, либо что-нибудь еще.

Очевидно, что такой инфракрасный датчик может быть применен для различных целей автоматизации, как в домашних условиях, так и на производственных и прочих предприятиях и объектах. Принципиально нет ограничений на области применения инфракрасных датчиков.

В основе конструкции инфракрасного датчика – пироприемники, служащие для распознавания инфракрасного излучения, и мультилинза, состоящая из множества мелких линз. Мультилинза внешне похожа на матовый цилиндр с мелким узором, нанесенным на его поверхность. Пироприемники расположены внутри корпуса датчика за мультилинзой.

Каждая маленькая линза (каждый сегмент мультилинзы) фокусирует инфракрасный свет на один из этих приемных элементов, благодаря чему создается конфигурация сфокусированных лучей, затем, когда объект (источник инфракрасного излучения) перемещается, инфракрасный свет падает уже на другую микролинзу, фокусируясь на другом пироприемнике.

Получается, что на пироприемник то подается сфокусированный инфракрасный свет, то – исчезает. Так обеспечивается условие для срабатывания электронной схемы датчика, подается электрический сигнал на блок обработки, и выполняется то или иное действие тем или иным устройством.

Ясно, что чем больше сегментов содержит мультилинза, тем чувствительней будет работать датчик, поскольку каждая микролинза работает со своим сегментом, охватывая собственную часть объема рабочего пространства, и при перемещении объекта внутри этого сегмента срабатывания не произойдет.

В конструкции инфракрасного датчика зачастую применяются сдвоенные или даже счетверенные пироэлементы, это делается для более точного срабатывания устройства, исключая незначительные световые помехи, вызываемые сменой температуры фона. Счетверенные пироэлементы (два сдвоенных), применяемые в самых последних моделях инфракрасных датчиков, полностью исключают ложные срабатывания.

При установке инфракрасного датчика движения следует соблюсти некоторые важные условия. Во-первых, на датчик не должен падать прямой свет от лампы, он будет мешать правильной работе. Во-вторых, в зоне действия датчика не должно быть никаких посторонних предметов, как то: подвесные светильники, люстры, колонны, высокие элементы мебели, и другие объекты, ограничивающие обзор датчика.

Стеклянные перегородки в зоне действия датчика также будут мешать, поскольку инфракрасный свет не проходит через стекло. Если мешающий предмет все же попадет в зону действия датчика, то это чревато возникновением так называемой «мертвой зоны», в которой перемещение фиксироваться не сможет просто в силу того, что инфракрасный свет не попадет на линзу датчика.

Главной характеристикой инфракрасного датчика движения является радиус обнаружения идущего человека. Радиус перемещения должен обязательно дотягиваться до углов помещения, а в случае, если этого не выходит, в помещении придется установить два или три таких датчика.

Каждый датчик обладает собственной круговой диаграммой обнаружения, и если одной такой диаграммы не достаточно для перекрытия всего пространства, например комнаты, придется установить несколько датчиков, чтобы их диаграммы обнаружения перехлестывались между собой, это обеспечит качество монтируемой системы автоматизации в целом.

Владельцы собак, кошек и других домашних животных часто задаются вопросом, можно ли создать стабильную систему, которая бы выдерживала домашних животных. Лучшим решением будет изолировать животных от территории, которую мы собираемся защищать.

Однако обычно это невозможно, поэтому производители инфракрасных датчиков движения удовлетворяют потребности пользователей, предлагая датчики, оснащенные технологиями и алгоритмами обнаружения, которые позволяют минимизировать причины ложных срабатываний, вызванных, среди прочего, животными.

Технология цифрового трехуровневого покрытия поля обнаружения, используемая в современных датчиках движения, исключает явление ложных тревог, вызванных мелкими животными.

Наружные ИК-датчики OPTEX не обнаруживают домашних животных и животных, а только обнаруживают присутствие человека, создавая более надежное решение для датчиков безопасности

Инфракрасные датчики движения бывают разными. Самые обычные модели реагируют на перемещение, но есть и более функциональные модели, расширяющие возможности для автоматизации.

Например, есть модели, могущие вести мониторинг освещенности, если движущийся человек присутствует в рабочей зоне. Когда света из окон достаточно, такой датчик может отключить искусственный свет, и включить его, когда начнет темнеть.

В таких датчиках есть возможность настройки такой чувствительности именно к свету. Особенно актуально это для подъездов домов, когда важно оптимизировать энергопотребление, включая свет только в темное время суток, или только тогда, когда по подъезду идет человек. Материальные расходы, благодаря такой автоматизированной системе могут быть существенно снижены.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Датчик движения для включения освещения

Включать освещение в некоторых помещениях или на улице на весь темный период неразумно. Чтобы свет горел только тогда когда нужно, в цепь питания светильника ставят датчик движения. В «нормальном» состоянии он разрывает цепь питания. При появлении в его зоне действия какого-то движущегося предмета, контакты замыкаются, освещение включается. После того, как объект пропадет из зоны действия, свет выключается. Такой алгоритм работы отлично показал себя в уличном освещении, в освещении подсобных помещений, коридоров, подвалов, подъездов и лестниц. В общем, в тех местах, где люди появляются только периодически. Так что для экономии и удобства лучше поставить датчик движения для включения света.

Виды и разновидности

Датчики движения для включения света могут быть разных типов, предназначены для различных условий эксплуатации. В первую очередь надо смотреть где может устанавливаться устройство.

Читайте также:  Как подключить диммер: пошаговая инструкция для самостоятельного монтажа

Датчик движения для включения света нужен не только на улице

Уличные датчики движения имеют высокую степень защиты корпуса. Для нормальной эксплуатации на открытом воздухе берут датчики с IP не ниже 55, но лучше — выше. Для установки в доме можно брать IP 22 и выше.

Тип питания

Далее надо учесть, от какого источника питается датчик света. Есть следующие варианты :

  • Проводные датчики с питанием от сети 220 В.
  • Беспроводные, с питанием от батареек или аккумуляторов.

Датчики движения бывают проводными и беспроводными

Самая многочисленная группа — проводные для подключения к 220 В. Беспроводных меньше, но их тоже достаточно. Они хороши если включать надо освещение, работающее от низковольтных источников тока — аккумуляторных или солнечных батарей, например.

Способ определения наличия движения

Датчик движения для включения света может определять движущиеся объекты используя различные принцип детекции:

  • Инфракрасные датчики движения. Реагируют на тепло, выделяемое телом теплокровных существ. Относятся к пассивным устройствам, так как сам ничего не вырабатывает, только регистрирует излучение. Эти датчики реагируют на движение животных в том числе, так что могут быть ложные срабатывания.
  • Акустические датчики движения (шума). Также относятся к пассивной группе оборудования. Они реагируют на шум, могут включаться от хлопка, звука открываемой двери. Они могут использоваться в подвалах частных домов, где шум возникает только туда кто-нибудь заходит. В других местах применение ограничено.

Работа инфракрасных датчиков движения основаны на отслеживании тепла, выделяемого человеком

  • Микроволновые датчики движения. Относятся к группе активных устройств. Сами вырабатывают волны в микроволновом диапазоне и отслеживают их возвращение. При наличии движущегося объекта замыкают/размыкают контакты (есть разного типа). Есть чувствительные модели, которые «видят» даже через перегородки или стены. Обычно используются в охранных системах.
  • Ультразвуковые. Принцип действия такой же, как у микроволновых, отличается диапазон излучаемых волн. Этот тип устройств применяют редко, так как на ультразвук могут реагировать животные, да и длительное воздействие на человека (аппараты постоянно генерируют излучение) пользы не принесет.

    Разное исполнение, но цвет, в основном, белый и черный

  • Комбинированные (дуальные). Сочетают несколько способов обнаружения движения. Они более надежные, имеют меньше ложных срабатываний, но и более дорогостоящие.
  • Чаще всего для включения света на улице или дома используют инфракрасные датчики движения. Они имеют невысокую цену, большой радиус действия, большое количество регулировок, которые помогут настроить его. На лестницах и в длинных коридорах лучше поставить датчик с ультразвуком или микроволновой. Они в состоянии включить освещение даже если вы еще далеко от источника света. В охранных системах рекомендованы к установке микроволновые — они обнаруживают движение даже за перегородками.

    Технические характеристики

    После того, как определились с тем, какой датчик движения для включения света вы будете ставить, надо подобрать его технические характеристики.

    В технических характеристиках беспроводных моделей есть еще частота, на которой они работают и тип элементов питания

    Угол обзора

    Датчик движения для включения света может обладать различным углом обзора в горизонтальной плоскости — от 90° до 360°. Если к объекту могут подходить с любого направления, ставят датчики с радиусом 180-360° — в зависимости от его расположения. Если устройство закреплено на стене, достаточно 180°, если на столбе — уже нужно 360°. В помещениях можно использовать те, которые отслеживают движение в узком секторе.

    В зависимости от места установки и требуемой зоны обнаружения выбирают радиус обзора

    Если дверь одна (подсобное помещение, например), может быть достаточно узкополосного датчика. Если в помещение входить могут с двух-трех сторон, модель должна уметь видеть, как минимум, на 180°, а лучше — во все стороны. Чем шире»охват», тем лучше, но стоимость широкоугольных моделей значительно выше, так что стоит исходить из принципа разумной достаточности.

    Есть также угол обзора по вертикали. В обычных недорогих моделях он составляет 15-20°, но есть модели, которые могут охватывать до 180°. Широкоугольные детекторы движения обычно ставят в охранных системах, а не в системах освещения, так как стоимость их солидная. В связи с этим, стоит правильно подбирать высоту установки прибора: чтобы «мертвая зона», в которой детектор просто ничего не видит, была не в том месте, где движение наиболее интенсивное.

    Дальность действия

    Тут снова-таки, стоит выбирать с учетом того, в помещении будет устанавливаться датчик движения для включения света или на улице. Для помещений радиуса действия в 5-7 метров хватит с головой.

    Дальность действия выбирайте с запасом

    Для улицы желательна установка более «дальнобойных». Но тут тоже смотрите: при большом радиусе охвата ложные срабатывания могут быть очень частыми. Так что слишком большая зона покрытия может быть даже недостатком.

    Мощность подключаемых светильников

    Каждый датчик движения для включения света рассчитан на подключение определенной нагрузки — он может пропускать через себя ток определенного номинала. Потому, при выборе, надо знать, суммарную мощность ламп, которые устройство будет подключать.

    Мощность подключаемых светильников критична, если включаться будет группа фонарей или один мощный

    Чтобы не переплачивать за повышенную пропускную способность датчика движения, да еще и сэкономить на счетах за электричество, используйте не лампы накаливания, а более экономичные — газоразрядные, люминесцентные или светодиодные.

    Способ и место установки

    Кроме явного деления на уличные и «домашние» есть еще один тип деления по месту установки датчиков движения:

    • Корпусные модели. Небольшая коробочка, которая может монтироваться на кронштейне. Кронштейн закрепляться может:
      • на потолке;
      • на стене.

      Вид датчика движения по внешнему виду не определишь, можно лишь понять на потолке он устанавливается или на стене

  • Встраиваемые модели для скрытой установки. Миниатюрные модели, которые могут устанавливаться в специальные углубления в незаметном месте.
  • Если освещение включается только для повышения комфорта, выбирают корпусные модели, так как при равных характеристиках они дешевле. Встраиваемые ставят в охранных системах. Они миниатюрные, но более дорогие.

    Дополнительные функции

    Некоторые детекторы движения имеют дополнительные возможности. Некоторые из них явное излишество, другие, в определенных ситуациях, могут быть полезны.

    • Встроенный датчик освещенности. Если датчик движения для включения света установлен на улице или в помещении с окном, включать свет в светлое время суток нет необходимости — освещенность достаточная. В этом случае либо в цепь встраивают фотореле, либо используют детектор движения со встроенным фотореле (в одном корпусе).
    • Защита от животных. Полезная функция, если есть коты, собаки. С такой функцией ложных срабатываний намного меньше. Если собака большого размера, даже эта опция не спасет. Зато с кошками и мелкими собаками она работает неплохо.

    Для многих полезной функцией будет защита от срабатывания при появлении животных

  • Задержка отключения света. Есть устройства, которые выключают свет сразу после того как объект покидает из зону действия. В большинстве случаев это неудобно: свет еще нужен. Потому удобны модели с задержкой, а еще удобнее те, которые позволяют эту задержку регулировать.
  • Это все функции, которые могут быть полезны. Особенно обратите внимание на защиту от животных и задержку отключения. Это действительно полезные опции.

    Где разместить

    Установить датчик движения для включения освещения надо правильно — чтобы работал он корректно, придерживайтесь определенных правил:

    • Рядом не должно быть осветительных приборов. Свет мешает корректной работе.
    • Поблизости не должно быть отопительных приборов или кондиционеров. Детекторы движения любого типа реагируют на потоки воздуха.

    С увеличением высоты установки увеличивается зона обнаружения, но снижается чувствительность

  • Не должно быть больших объектов. Они заслоняют обширные зоны.
  • В больших помещениях устройство лучше устанавливать на потолке. Его радиус обзора должен быть 360°. Если датчик должен включать освещение от любого движения в помещении, его устанавливают по центру, если контролируется только какая-то часть, расстояние выбирается так, чтобы «мертвая зона» бала минимальной.

    Датчик движения для включения света: схемы установки

    В самом простом случае датчик движения подключается в разрыв фазного провода, который идет на лампу. Если речь идет о темном помещении без окон, такая схема работоспособна и оптимальна.

    Схема включения датчика движения для включения света в темном помещении

    Если говорить конкретно о подключении проводов, то фаза и ноль заводятся на вход датчика движения (обычно подписаны L для фазы и N для нейтрали). С выхода датчика фаза подается на лампу, а ноль и земля на нее берем со щитка или с ближайшей распределительной коробки.

    Если же речь идет об уличном освещении или включении света в помещении с окнами, надо будет или ставить датчик освещенности (фотореле), или устанавливать на линии выключатель. Оба устройства предотвращают включение освещения в светлое время суток. Просто одно (фотореле) работает в автоматическом режиме, а второе включается принудительно человеком.

    Схема подключения датчика движения на улице или в помещении с окнами. На месте выключателя может быть фотореле

    Ставятся они также в разрыв фазного провода. Только при использовании датчика освещенности, его надо ставить перед реле движения. В таком случае оно будет получать питание только после того как стемнеет и не будет работать «вхолостую» днем. Так как любой электроприбор рассчитан на определенное количество срабатываний, это продлит срок эксплуатации датчика движения.

    Все описанные выше схемы имеют один недостаток: освещение нельзя включить на длительное время. Если вам надо вечером проводить какие-то работы на лестнице, вам придется все время двигаться, иначе периодически свет будет отключаться.

    Схема подключения датчика движения с возможностью длительного включения освещения (в обход датчика)

    Для возможности длительного включения освещения, параллельно с детектором устанавливается выключатель. Пока он выключен, датчик в работе, свет включается когда он срабатывает. Если вам надо включить лампу на длительный период, щелкаете выключателем. Лампа горит все время, пока выключатель снова не будет переведен в положение «выключено».

    Регулировка (настройка)

    После монтажа, датчик движения для включения света необходимо настроить. Для настройки почти всех параметров на корпусе есть небольшие поворотные регуляторы. Их можно поворачивать, вставив в прорезь ноготь, но лучше использовать маленькую отвертку. Опишем регулировку датчика движения типа ДД со встроенным датчиком освещенности, так как они чаще всего ставятся в частных домах для автоматизации уличного освещения.

    Угол наклона

    Для тех датчиков, которые крепятся на стенах, сначала надо выставить угол наклона. Они закреплены на поворотных кронштейнах, при помощи которых и изменяется их положение. Его надо выбрать так, чтобы контролируемая область была самой большой. Точные рекомендации дать не получится, так как зависит это от угла вертикального обзора модели и от того, на какой высоте вы его повесили.

    Регулировка датчика движения начинается с выбора угла наклона

    Оптимальная высота установки датчика движения — около 2.4 метра. В этом случае даже те модели, которые могут охватывать всего 15-20° по вертикали контролируют достаточное пространство. Настройка угла наклона — это очень приблизительное название того, чем вам придется заниматься. Будете понемногу менять угол наклона, проверять, как срабатывает в таком положении датчик с разных возможных точек входа. Несложно, но муторно.

    Чувствительность

    На корпусе эта регулировка подписана SEN (от английского sensitive — чувствительность). Положение можно менять от минимального (min/low) до максимального (max/hight).

    В основном, регулировки выглядят так

    Это — одна из самых сложных настроек, так как от нее зависит будет ли срабатывать датчик на мелких животных (кошек и собак). Если собака большая, избежать ложных срабатываний не удастся. Со средними и мелкими животными это вполне возможно. Порядок настройки такой: выставляете на минимум, проверяете, как срабатывает на вас и на обитателей меньшего роста. Если необходимо, понемногу чувствительность увеличиваете.

    Время задержки

    У разных моделей диапазон задержки выключения разный — от 3 секунд до 15 минут. Вставлять его надо все также — поворотом регулировочного колеса. Подписано обычно Time (в переводе с английского «время»).

    Время свечения или время задержки — выбираете как вам больше нравится

    Тут все относительно легко — зная минимум и максимум вашей модели, примерно выбираете положение. После включения фонаря замираете и засекаете время, по истечении которого он отключится. Далее меняете положение регулятора в нужную сторону.

    Уровень освещенности

    Эта регулировка относится к фотореле, которое, как мы договорились, встроено в наш датчик движения для включения света. Если встроенного фотореле нет, ее просто не будет. Эта регулировка подписывается LUX, крайние положения подписаны min и max.

    Находится они могут на лицевой или тыльной стороне корпуса

    При подключении регулятор выставляете в максимальное положение. А вечером, при том уровне освещенности, когда вы считаете должен уже включаться свет, поворачиваете регулятор медленно к положению min до тез пор, пока лампа/фонарь включатся.

    Вот теперь можно считать, что реле движения настроено.

    Датчик движения для включения света: что это такое, как выбрать и подключить

    Особенности конструкции инфракрасного PIR датчика

    Инфракрасный датчик движения (PIR-датчик) предназначен для регистрации теплового (инфракрасного) излучения предметов, находящихся в рабочей зоне устройства. Основная особенность его конструкции заключается в отсутствии самостоятельного излучения. Датчик движения Arduino лишь реагирует на внешнее излучение, анализируя полученные величины и подавая сигналы на управляющее устройство. Примечательно, что это устройство может выполнять и другие задачи, работая как датчик расстояния или детектор температуры. Существует масса вариантов конструкции, выпускаются различные модели подобных датчиков. Однако, несмотря на внешние различия, все они действуют на едином принципе.

    Конструкция

    Основным элементом датчика являются высокочувствительные пироэлектрические элементы (сенсоры, пироприемники, пиродетекторы). Они принимают инфракрасное излучение, которое фокусируется с помощью линзы Френеля. В наиболее эффективных моделях датчиков используется два подобных элемента. Если в помещении нет движущихся излучающих объектов, сигналы с обоих сенсоров будут одинаковыми. При любых изменениях появится разница сигналов, так как объект в любом случае сначала будет регистрироваться одним элементом, затем вторым. Если показания обоих пироприемников начинают отличаться друг от друга, значит, в рабочей зоне датчика возникло движение.

    Использование двух первичных датчиков позволяет увеличить чувствительность устройства, регистрировать перемещения объектов с разной температурой. Регистрируется совсем незначительная разница показаний обоих сенсоров, что позволяет управлять сложными и тонкими процессами.

    Кроме сенсоров, конструкцию датчика составляет фокусирующая линза, детали (микросхема) электронной развязки и контактная группа. На нее подается питание, здесь же имеется управляющий и сигнальный электроды.

    Особенности фокусирующей линзы

    Конструкция пироэлектрического элемента не позволяет ему принимать инфракрасное излучение с достаточной эффективностью. Для концентрации потока тепловых лучей используется специальная линза. Существует два варианта конструкции:

    Линза ФренеляОт обычных линз она отличается более плоской, компактной формой. Поверхность такой линзы разделена на участки, обеспечивающие фокусировку лучей в заданной точке. Эффективность линзы Френеля не уступает традиционным видам, но габариты значительно меньше

    Это важно для датчиков, использующихся в технологических линиях, или предназначенных для скрытого монтажа. Сферическая выпуклая линза.Вся поверхность этой линзы разделена на отдельные сегменты, являющиеся самостоятельными линзами. Такая конструкция увеличивает угол охвата датчика, позволяя с одинаковой эффективностью принимать ИК поток с разных направлений.

    Большей популярностью пользуются ПИР-датчики со сферическими линзами, например, модуль HC-SR501. Они способны охватить наибольшее пространство, обеспечить максимальный сектор обзора. Однако, модели с плоскими линзами также пользуются спросом.

    Где используется

    Инфракрасные ПИР-датчики активно используются в разных сферах деятельности:

    • технологические линии или установки;
    • охранные системы;
    • бытовые комплексы, системы умного дома и тому подобное.

    ИК датчик подобного типа не создает никакого излучения. Он не может ставить помехи другой чувствительной аппаратуре или оказывать вредное воздействие живым организмам. Благодаря этому, его применение постоянно расширяется. Работа в связке с микропроцессором Ардуино значительно расширяет область применения датчиков, далеко выводя их из привычных рабочих рамок. Появляется возможность увеличения функционала путем подключения фоторезисторов, термисторов и других дополнений. При этом, сами датчики являются вполне самостоятельными устройствами и могут подключаться не только на Ардуино. Существует масса альтернативных вариантов, использующихся в различных областях техники, системах наблюдения и управления. Однако, особенности и преимущества Ардуино делают его наиболее предпочтительным образцом управляющего устройства.

    Когда применяются ИКДД

    Прибор в первую очередь предназначен для фиксации движения людей. Перемещения объекта в зоне обзора инфракрасного датчика движения (ИКДД) замечают фотоэлементы головки прибора. Сигнал подаётся в электронный блок управления, который, в свою очередь, через реле включает то или иное устройство.

    Датчики движения эксплуатируются, преследуя различные цели в определённых условиях. ДД различаются по назначению:

    • охранные системы;
    • управление освещением;
    • система «Умный дом».

    Охранные системы

    Проблема охраны придомовых территорий и помещений в зданиях и сооружениях во многом решается за счёт установки ИКДД. Контрольные устройства работают совместно с системой видеонаблюдения, звуковой сигнализацией.

    В отсутствии хозяина детектор движения, установленный в салоне автомобиля, при приближении человека к машине включает камеру видеорегистратора. Если произошло воровство, водитель потом может увидеть, кто это сделал.

    Управление освещением

    Установленные датчики в доме или квартире могут существенно сэкономить затраты на оплату электроэнергии. Подсоединенные к приборам освещения в доме или на улице инфракрасные датчики мгновенно включают свет при появлении человека в зоне охвата ИК детекторов.

    ИКДД, управляющие освещением, имеют три опции настроек, это:

    • освещённость;
    • чувствительность;
    • время задержки.
    Освещённость

    Реакцию прибора на степень освещённости зоны контроля регулируют винтом «LUX». В зависимости от места установки регулятор поворачивают в определённую позицию. В закрытых помещениях от наружного света шлиц винт ставят напротив отметки «Max». Если прибор должен срабатывать при наступлении сумерек, то положение регулятора фиксируют опытным путём.

    Чувствительность

    Винтом «Sens» добиваются реакции ИКДД на определённый объём движущегося объекта. Особенно это нужно для уличных приборов, чтобы они не реагировали на мелких животных.

    Время задержки

    Время задержки регулируют поворотом винта «Time». Это даёт возможность работать освещению некоторое время после прекращения какого-либо движения в поле обзора ДД. Временной промежуток устанавливают в пределах от 5 секунд до 10 минут.

    Важно! Универсальность применения ДД позволяет создавать комбинированные схемы охраны различных объектов. Датчики устанавливают на огородах и в полях, гаражах и мастерских, складских помещениях и т.д

    ИК датчик может производить одновременное включение света, сирены, видеокамеры и передать по беспроводной связи информацию на смартфон.

    Система «Умный дом»

    Операционная система «Умный дом» приобретает всё большую популярность у населения страны. Управляющий комплекс может устанавливать режимы работы различных домашних устройств и оборудования. Датчики движения являются неотъемлемой частью этой системы.

    Инфракрасные детекторы при появлении хозяев в жилище передают сигналы в операционную систему, которая может включить тёплые полы, вентиляцию, открыть шторы на окнах и многое другое. Управлять «Умным домом» можно дистанционно с помощью мобильного телефона.

    Настройка параметров

    Для оптимизации процесса включения света очень важно правильно выполнить регулировку датчика в зависимости от характера движения и параметров самого объекта. Как правило, учитываются четыре основных характеристики – угол установки, чувствительность, освещенность и время задержки после срабатывания

    Рассмотрим их подробно.

    Угол установки

    Согласно правилам, угол установки датчика для включения света должен быть таким, чтобы центр поля действия приходился на точку максимально интенсивного или наиболее вероятного движения объекта. Добиться этого можно, соблюдая:

    1. Правила монтажа, указанные в инструкции. Особенно актуально их выполнение для приборов, не имеющих никаких механических настроек. В них обзорный угол полностью задается техническими особенностями самого устройства, а также высотой и местом его расположения. Например, датчик с углом в 180 градусов, устанавливаются на стену, в 360 градусов – на потолке, а 90 градусов – в углу.
    2. Практическая регулировка. Детектор с наклонно-поворотным кронштейном позволяет опытным путем выполнить более тонкую настройку. Такие устройства дают возможность менять поле и дальность действия сенсора. Это, например, необходимо на охраняемой или придомовой обширной территории или рядом с оживленным пешеходом или автострадой, чтобы исключить попадание движения объектов на них в поле объектива.

    Чувствительность

    Регулировка датчика по уровню чувствительности позволяет исключить включение света в ответ на движение мелких объектов и посторонних предметов в дальней области зоны слежения. Настройка этого параметра выполняется опытным путем:

    1. Для начала нужно установить максимальную чувствительность.
    2. Далее необходимо проверить, как он будет работать на оптимальном расстоянии.
    3. Нужно постепенно уменьшать уровень – до тех пор, пока он перестанет реагировать на человека средних параметров.
    4. Затем проверить, как он отреагирует на мелких животных или посторонние предметы.
    5. Установить найденный порог чувствительности.

    В идеале степень чувствительности датчика на движение должна быть такой, чтобы включение света происходило на границе достаточной освещенности от фонаря или люстры при прохождении человека со средними антропометрическими данными.

    Каждый, кто устанавливает датчик на движение, должен знать, как самостоятельно уменьшить чувствительность сенсора. Во время эксплуатации могут возникнуть непредвиденные обстоятельства и включение света будет происходить незапланированно. Перед или сразу после установки устройства необходимо удостовериться, как это сделать своими руками наиболее быстрым и правильным путем без вызова мастера-установщика.

    Освещенность

    Чтобы датчик перестал посылать сигнал на включение света днем, поздним утром и ранним вечером, необходимо выполнить его регулировку по параметру освещенности — LUX. Настройка состоит из следующих действий:

    1. Повернуть стрелку регулятора до максимального уровня (куда она увеличивается).
    2. С наступлением достаточного уровня темноты медленно поворачивать его в обратном положении пока сенсор не сработает и не начнет включать свет.

    Настроенные таким способом датчик чувствительности далее всегда (до изменения его положения) будет включать свет при наступлении такого же уровня темноты.

    Время задержки

    Как правильно настроить датчик для включения света по движению на время задержки после срабатывания волнует тех, кто выполняет такую регулировку впервые. Также, как и в том случае, когда требовалось задать параметры освещенности и чувствительности, необходимо найти шлиц или винт на панели прибора с надписью Time.

    Чтобы правильно выполнить регулировку по времени задержки необходимо:

    1. Перевести регулятор в минимальное значение.
    2. Инициировать датчик посредством движения.
    3. Засечь время.
    4. Опытным путем определить необходимое время, сохранив параметры.

    Современные датчики на движение позволяют настраивать время задержки после включения света от 5 секунд до 10 минут.

    Например, если сенсор установлен на входе в подъезд, а человеку нужно подняться по лестнице на 5-ый этаж, после чего отдышаться, найти ключи и открыть квартиру, то параметр должен быть установлен на максимальное значение. Другое дело – коридор в квартире, когда прохождение через него не занимает дольше 2-3 секунд. Здесь значение этой характеристики можно свести к минимуму.

    Разновидности и особенности

    Существующие инфракрасные датчики бывают пассивные и активные.

    Пассивные сенсоры обнаруживают объект при помощи пироэлектрического чувствительного элемента. С целью повышения чувствительности датчики оснащается оптической системой линз. В условиях перепадов температуры для повышения термостабильности обычно используется парный вариант соединения, при котором элементы включаются встречно.

    В отличие от пассивных аналогов, активные датчики сами являются источником инфракрасного излучения и отслеживают отраженные инфракрасные волны. Они обладают большей достоверностью отсылаемого сигнала и меньшим числом ложных срабатываний, однако не столь энергоэффективны – потребляют электроэнергию от встроенного аккумулятора или электросети.

    Извещатели скорости

    Извещатели скорости осуществляют синхронизацию скоростей нескольких двигателей. Также в существующих системах охранной сигнализации с помощью извещателей скорости осуществляется контроль внутреннего объема помещений, с высокой эффективностью блокируется территория «на проход» человека, перемещающегося со скоростью 0,3–3,0 м в секунду. Он оперативно реагирует на перепады температур в секторах «нарезки» контролируемого объема (с помощью оптической детали со ступенчатой поверхностью, называемой линзой Френеля), если он находится в пределах зоны чувствительности.

    Детекторы PIR

    PIR детекторами называют пассивные (не излучающие тепловые лучи) инфракрасные устройства, служащие для визуальной фиксации положения объекта. PIR детекторы обычно используются для контроля общественных помещений и автоматического открывания дверей.

    Пироэлектрический чувствительный элемент представляет цилиндрическое устройство с кристаллом прямоугольным формы в центре, улавливающем ИК свет. Поскольку PIR детектор должен реагировать на движение объекта, излучающего тепло, одна половина датчика улавливает больший уровень излучения, чем другая. Вследствие этого на выходе будет генерироваться цифровой сигнал «high» (обычно напряжением 3В), когда есть движение, или «low, когда движение объекта отсутствует.

    ПИР датчики используют в случае необходимости определить присутствие человека в пределах контролируемого пространства. Они не определяют расстояние и количество человек на территории.

    Извещатели температуры

    ИК извещатель относится к наиболее распространенному типу извещателей температур, используемых для промышленного контроля температуры технологических процессов. Минимальная достаточная чувствительность пироэлектрического элемента обычно находится на уровне 0,1°С, для этого используется пироэлемент размером 1,0 х 2,0 мм и толщиной в несколько микрон.

    Сенсоры объемные

    Инфракрасные объемные сенсоры – пассивные экземпляры. Очень часто они используются для охраны автомобилей. Приспособления не излучают ничего, работая только «на прием», и реагируют на изменение распределения ИК лучей с раскрывом по вертикали/горизонтали порядка 90º, то есть являются объемными. Дальность действия разных моделей отличается, как правило, она составляет 6–12 метров.

    В случае перемещении объекта с температурой отличной от окружающего фона, пироэлектрический сенсор генерирует электрический импульс. Этот импульс обрабатывается по определенному алгоритму: сначала повышается его помехоустойчивость (избирательность), затем формируется сигнал тревожного извещения. По проводам или беспроводной связи после усиления сигнал поступает на соответствующий пульт охраны, например, контрольную панель автостоянки.

    Когда и где использовать датчик движения для включения света

    Далеко не всегда и не везде удобно включать свет при помощи выключателя. Например, на лестничной площадке, в длинном коридоре. И на улице возле дома. Оставить «дежурное» освещение — это одно. Но постоянно освещать дорожку к дому, крыльцо и подъездные пути — сплошное расточительство. Ходить в темноте — опасно. Или вы приехали на машине, поздно пришли домой… Как включать свет?

    Для лестниц и длинных коридоров есть решение — установка проходных выключателей, которые позволяют управлять освещением из двух или более точек. Но, если у вас заняты руки, и они не помогут.

    Дело даже не всегда в экономии, хотя, и это тоже не последняя причина

    Та же проблема в технических помещениях типа кладовой, прачечной, погреба и т.д. Тут очень часто руки заняты. Чтобы включить свет, нужно в темноте дойти куда-то, поставить груз, а потом вернуться к выключателю. Есть и другие варианты, которые мы иногда используем — попытаться использовать локоть, поставить груз у ног, включить свет, затем продолжать свои дела. Установка детектора движения решает все эти проблемы.

    Удобно, кстати, делать подсветку внутренней лестницы на детекторах движения в коттеджах. Датчики поставить на уровне ступеней вверху и внизу, выставить интервал отключения, достаточный для подъема или спуска. Удобно. По такому же принципу можно сделать подсветку пола в спальне. Опустили ноги с кровати — включилась подсветка. Комфортно.

    Комфорт состоит из мелочей

    Можно сделать подсветку на датчике движения в шкафу. Тоже удобно — открыли дверку — свет включен. Закрыли — выключился. И, что характерно, никаких контактов — работает надежно.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: