Автоматический выключатель: виды и типы, время-токовые характеристики, принцип работы, классификация

Классы автоматических выключателей

Время на чтение:

Автоматы электрические — удобные и практичные средства, которые позволяют защитить электрооборудование и пользователя от внезапных коротких замыканий. Что они собой представляют, какая есть классификация, как их выбрать, какие есть типы автоматических выключателей? Об этом и другом далее.

Общие характеристики

Автоматический электрический выключатель является коммутационным устройством, которое пропускает через свою структуру ток, имеющий номинальную силу. Во время необходимости делает отключение цепи, к примеру, при коротком замыкании или при повышении потребляемой мощности. В настоящее время есть однофазный, двухфазный и трехфазный прибор, отвечая на вопрос, какие существуют автоматы электрические разновидности. Отличаются они друг от друга числом тех элементов, которые разъединяют ток.

Как выглядит

Предназначен аппарат, для того чтобы защищать электрическую цепь, чтобы не происходили перегрузки и токи с коротким замыканием. Его можно многократно использовать. Срабатывает он стабильно всегда.

Обратите внимание! Главный параметр электроавтомата — число пропускания номинального тока, токовой энергии, которая нужна, чтобы нормально работали бытовые электрические приборы. В частном доме и городской квартире ставится автомат на 6-63 ампера. Специалистами рекомендуется разбитие электросети в домашних условиях на пару контурах и установку каждого на собственный выключатель.

Принцип действия

Внешне аппарат имеет термостойкий пластмассовый корпус с рукояткой, ответственной за начало и окончание работы. Имеет в себе фиксатор-защелку сзади и винтовые виды клемм снизу.

Главным в автоматическом выключателе является конструктивный узел, а именно главная контактная система, дугогасительная система, привод с расцепителем и вспомогательным контактом. Контактная система бывает одно-, двух- или трехступенчатая. Дугогасительная система включает в себя камеры, имеющие дугогасительные решетки или узкие щели.

Независимо от исполнения, есть предельный ток действия, который не ломает автомат, поскольку из-за превышения напряжения подгорают или свариваются контакты.

Выполняется автоматический выключатель с дополнением ручного или двигательного привода. Бывает стационарным или передвижным. Привод нужен, чтобы включатель и автоматически отключать систему. Также в системе присутствует реле, имеющее прямое действие. Это электронный расцепитель, который включает в себя рычаги, защелки, коромысла и отключающие пружины.

Конструкция

Работает аппарат очень просто. Напряжение от сети идет к верхней клемме, которая соединена с неподвижным контактом. От него идет энергия на подвижный контакт. Он уже передает ее к медному проводнику и тепловому расцепителю. В конце ток подается в нижнюю клемму. При аварии, к примеру, при перегрузке или коротком замыкании, отключается защищаемая электроцепь за счет того, что начинает работать электромагнитный расцепитель.

Обратите внимание! Важно отметить, что электромагнитным расцепителем называется элемент с соленоидом, имеющий подвижный стальной сердечник, который удерживает пружина. Во время превышения токового напряжения, в катушке появляется электрополе. Сердечник попадает внутрь катушки и преодолевает пружинное сопротивление. В результате срабатывает расцепление. Без аварии силы электрополя недостаточно для наступления расцепления.

Классификация

Согласно классификации ГОСТа 9098-78, в ответ на то, какие бывают автоматы, стоит указать, что аппарат бывает:

  • однополюсным, двухполюсным, трехполюсным и четырехполюсным;
  • токоограничивающим и нетокоограничивающим;
  • выкатным и стационарным;
  • селективным и неселективным;
  • ручным, двигательным и пружинным.

Бывает создан для работы с постоянным или переменным током, иметь в себе максимальный, независимый или нулевой токовый расцепитель. Также есть классификация по выдержке времени, по контактам, по внешним проводникам, по степени защиты и присоединению проводников.

Число полюсов

По числу полюсов бывает одно-, двух-, трех- и четырехполюсная модель. Чаще всего используется в работе одно- и двух-полюсная модель, несмотря на сниженный класс автоматических выключателей защиты.

Обратите внимание! Это характеристика показывает тот факт, сколько можно подключить проводов к аппарату, чтобы защитить сеть.

Время токовый параметр

Время-токовая характеристика автомата — зависимость времени срабатывания устройства от энергии электричества, которая протекает через него. Прописывается на каждом устройстве буквой В, С и Д. В первом случае аппарат выключается за 20 секунд. Создан для домашнего использования. Во втором случае автомат выключается за 10 секунд. Применяется как в быту, так и в промышленной сфере. Автовыключатели, имеющие последнюю техническую характеристику, используются только в промышленности. Они работают с током в 14 ампер и выключаются за 10 секунд. Эту разновидность эффективно используют в проводке.

Номинальный ток

Всего на данный момент известно о двенадцати модификационных моделей автоматов, которые отличаются по номинальному току. Этот параметр ответственен за то, чтобы при превышении номинального напряжения срабатывал автомат. Аппарат с малым номиналом используется там, где малое количество электрооборудования. Выключатели в 16 ампер позволяют обеспечить бесперебойной работой всей квартиры. Автоматы с номиналом в 32 ампера защищают проводку квартиры. Аппараты, имеющие большое значение амперов, используются для силового оборудования, имеющего большую мощность.

Модель с номинальным током в 16 ампер

Отключающая способность

Отключающая способность — характеристика, при которой автомат срабатывает, если напряжение в сети выше установленного номинального токового значения.

Как выбрать

Выбирать аппарат нужно по количеству номинального тока, полюсов, характеристики времени срабатывания и отключающей способности. Также, конечно, необходимо смотреть на бренд, маркировку и цену устройства.

Обратите внимание! При выборе стоит отталкиваться от суммарного количества мощностей электрооборудования.

Определение мощности автомата

Определить, какая нужна мощность оборудования, можно, суммировав все реальные мощности каждого отдельного электроаппарата, включенного в одну сеть. Выявить это также можно через таблицу, приведенную ниже. Данные приведены средние по нормативным документам.

Важно понимать, что может понадобиться больше электроэнергии и соответствующая большая сила агрегата, поскольку могут быть куплены дополнительные приборы, которые раннее в расчет не принимались.

Таблица мощности бытовых приборов и инструментов

Расчет номинальной мощности автомата

Вычислить номинальную силу или ту мощность, при которой проводка не отключится, можно по формуле M = N * CT * cos(φ), где M является силой в ваттах; N — напряжением электрической сети в вольтах; СТ — токовой энергией, которая способна появится в аппарате; cos(φ) — значением косинуса угла фазы с напряжением.

Вычисление номинального тока

Узнать номинальную токовую энергию можно, посмотрев документацию электрической проводки. Для расчета без нее нужно знать площадь проводникового сечения и способ ее прокладки.

Обратите внимание! Далее значения нужно подставить в формулу S = 0,785 * D * D, где D является проводниковым диаметром; S — площадью проводникового сечения.

Определение время-токовой характеристики

Для правильного вычисления токовой характеристики по времени необходимо считывание пусковых токов. Чтобы все выяснить, стоит воспользоваться следующей таблицей ниже.

Особенности маркировки

На каждом автомате прописываются все характеристики. Имеет на своем корпусе маркировки нагрузки номинального тока, коммутационной способности, класса токоограничения, номинальной отключающей способности и время-токовой характеристики срабатывания расцепительной системе.

Читайте также:  Разводка электрики на кухне: замена и монтаж проводки, схема распределения нагрузки по группам,

Популярные производители

Сегодня лучшие автоматические выключатели выпускает компания марки АВВ, Legrand, Schneider Electric, General Electric, CHINT Electric и DEKraft.

Бренд Legrand

В целом, электрические автоматические выключатели — профессиональное оборудование, благодаря которому можно минимизировать риски при отключении света и коротком замыкании. Имеют классификацию по числу полюсов, время-токовому параметру, номинальному току, отключающей способности. Выбрать несложно, принимая во внимание мощность, номинальный ток, токовую характеристику и маркировку. Как правило, пользователи рекомендуют останавливать свой выбор на популярных брендах.

Блок питания из энергосберегающей лампы своими руками: схема

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Читайте также:  Кто изобрел электричество и когда оно появилось: в каком году, открытие, история, кто изобрёл и придумал, в каком году

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Читайте также:  Проводка в деревянном доме своими руками: правила монтажа, открытая и внутренняя, разводка, ввод электричества, пошаговая инструкция и схемы

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

Блок питания из энергосберегающей лампы своими руками

28 сентября 2018

Время на чтение:

Очень часто причиной поломки электроприбора становится неисправность аккумулятора. Вследствие этого нужен ремонт или же покупка нового оборудования. Но можно избежать больших затрат, сделав блок питания из энергосберегающей лампы своими руками. Все необходимые детали можно взять из обычной люминесцентной лампы, стоимость которой невелика.

Балласт люминесцентной лампы

В каждой энергосберегающей лампочке имеется небольшая схема, которая предотвращает мигание во время включения, а также способствует постепенному разогреву спиралей устройства. Её название — электронный балласт. Именно с помощью него газ может испускать свечение (частота 30−100 кГц, а иногда и 105 кГц).

Вследствие того, что устройство может иметь такие высокие показатели частот, коэффициент потребления энергии возрастает до единицы, а это, в свою очередь, делает энергосберегающие лампы экономично выгодными.

Значительным преимуществом таких устройств является отсутствие какого-либо шума во время работы, а также электромагнитного поля, который негативно воздействует на организм человека.

Важную роль в схеме балласта энергосберегающей лампы играет электронный дроссель. Именно он определяет, будет ли устройство загораться сразу же с полной силой или же разогреваться постепенно в течение нескольких минут. Стоит отметить, что производитель никогда на упаковке не указывает время разогрева. Проверить это можно лишь во время эксплуатации устройства.

Те балластные схемы, которые выполняют функцию преобразования напряжения (а таковых большая часть), собираются на полупроводниковых транзисторах. В дорогостоящих устройствах схема более сложная, чем в дешёвых лампочках.

Из сгоревшей энергосберегающей лампы можно сделать заготовки для будущего импульсного блока питания. Также для этого можно взять и работающее устройство.

В составе компактной люминесцентной лампочки (КЛЛ) имеются следующие элементы:

  1. Биполярные транзисторы с защитными диодами. Как правило, они выдерживают напряжение в 700 В, а также силу тока до 4 А.
  2. Трансформатор импульсного тока.
  3. Электронный дроссель.
  4. Конденсатор (10/50 В, а также 18В).
  5. Двунаправленный триггерный неуправляемый диод (динистор).
  6. Очень редко в устройстве содержится униполярный транзистор.

Во время изготовления БП из энергосберегающей лампы своими руками с использованием недешёвых экономок достаточно дополнить источник некоторыми деталями. Также в качестве основы будущего блока можно взять драйвер для светодиодов, которые зачастую устанавливают в фонарики.

Важно отметить, что для выполнения ИБП брать схему, имеющую электролитический конденсатор, не рекомендуется. Это связано с тем, что она в приборе в качестве блока питания прослужит недолго. Также для этой цели не подходят электронные балласты, в составе которых имеются специальные платы небольших размеров.

Особенности импульсного блока питания

ИБП — это инверторная система, в которой входное напряжение выпрямляется, а затем преобразуется в импульсы. Главная особенность ИБП заключается в значительном увеличении частоты тока, передающегося на трансформатор. Также стоит отметить небольшие габариты такого устройства. Ещё одним преимуществом является то, что БП во время работы не имеет никаких потерь энергии, в отличие от линейных, которые теряют значительную часть во время преобразования на трансформатор.

Принцип функционирования импульсного блока питания из энергосберегающей лампы заключается в следующем:

  1. Входной выпрямитель, состоящий из диодного моста и конденсатора, превращает переменный ток (входной) в постоянный.
  2. Инвертор, в свою очередь, трансформирует постоянный ток в переменный, но частота при этом возрастает с 50 Гц до 10 кГц, что является выше в 200 раз.
  3. Такой ток передаётся на трансформатор. Он будет или повышать, или понижать напряжение.
  4. Выходной выпрямитель преобразует переменный ток в постоянный, но при этом частота остаётся высокой.

Как правило, в современных схемах используются MOSFET — транзисторы. Их главная особенность — очень быстрая скорость переключения. Соответственно в таких балластах должны быть использованы и быстродействующие диоды. Они размещаются в выходном выпрямителе.

При изготовлении ИБП лучше использовать диоды Шоттки, поскольку они меньше всего теряют энергию во время работы на высокой частоте (в отличие от кремниевых, у которых этот показатель значительно выше).

Если же выходное напряжение очень низкое, тогда функцию выпрямителя может выполнять транзистор. Кроме того, можно вместо этого использовать дроссель. Такие простые преобразователи тока встречаются в схемах энергосберегающих ламп на 20 Вт.

Изготовление ИБП своими руками

Чаще всего во время изготовления импульсного БП требуется незначительно изменять строение дросселя, если для этой цели используется двухтранзисторная схема. Конечно же, некоторые элементы в устройстве нужно будет удалить.

Если же изготавливается БП, который будет иметь мощность 3,7−20 Ватт, в таком случае трансформатор не является основной составляющей. Вместо него лучше всего сделать несколько витков провода, которые закрепляются на магнитопровод. Для этого необязательно избавляться от старой намотки, их можно выполнить поверх.

Рекомендуется для этой цели использовать провод марки МГТФ, имеющий фторопластовую изоляцию. Понадобится небольшое его количество. Несмотря на это обмотка будет полностью покрыта, поскольку большая часть отводится на изоляцию. Из-за этого такие устройства имеют низкие показатели мощности. Для её увеличения требуется использовать трансформатор переменного тока.

Читайте также:  Вакуумный выключатель: устройство и принцип действия, 10 и 6 кВ, достоинства и недостатки, монтаж

Использование трансформатора

Главным преимуществом при изготовлении блока питания своими руками является то, что есть возможность подстраиваться под показатели трансформатора. Кроме этого, не потребуется цепь обратной связи, которая чаще всего является неотъемлемой частью в работе устройства. Даже если во время сборки были сделаны какие-либо ошибки, чаще всего такой блок будет работать.

Для того чтобы сделать собственноручно трансформатор, потребуется иметь дроссель, межобмоточную изоляцию, а также обмотку. Последнюю лучше всего выполнить из лакированного медного провода. Следует не забывать о том, что дроссель будет работать под напряжением.

Обмотку нужно тщательно изолировать даже тогда, когда она имеет заводскую специальную защитную плёнку из синтетического материала. В качестве изоляции можно использовать или электрокартон, или же обычную бумажную ленту, толщина которой должна быть не меньше 0,1 мм. Только после того, как будет сделана изоляция, можно поверх неё наматывать медный провод.

Что касается обмотки, то провод лучше всего выбрать как можно толще, а вот количество необходимых витков можно подобрать исходя из требуемых показателей работы будущего устройства.

Таким образом, можно сделать ИБП, который будет иметь мощность более 20 Вт.

Назначение выпрямителя

Для того чтобы в импульсном блоке не произошло насыщение магнитопровода, требуется использовать только двухполупериодный выходной выпрямитель. В том случае, если трансформатор должен понижать напряжение, рекомендуется использование схемы с нулевой точкой. Чтобы выполнить такую схему, нужно иметь две абсолютно одинаковые вторичные обмотки. Их можно сделать самостоятельно.

Следует учитывать то, что выпрямитель по типу «диодный мост» для этой цели не подходит. Это связано с тем, что значительное количество мощности во время передачи будет теряться, а значение электрического напряжения будет минимальным (менее 12В). Но если делать выпрямитель из специальных импульсных диодов, тогда стоимость такого устройства обойдётся значительно дороже.

Наладка устройства

После того как БП будет собран, требуется проверить его работу на максимальной мощности. Это необходимо для того, чтобы измерить температуру нагревания трансформатора и транзистора, значения которых не должны превышать 65 и 40 градусов соответственно. Чтобы избежать перегрева этих элементов, достаточно увеличить сечение провода обмотки. Также часто помогает изменение мощности магнитопровода в большую сторону (учитывается ЭПР). В том случае, если дроссель был взят из балласта светодиодного фонаря, увеличить сечение не получится. Единственным вариантом будет контролировать нагрузку на прибор.

Подключение к шу

руповёрту

Чтобы установить импульсный блок питания в шуруповёрт, потребуется разобрать электроинструмент. Как правило, его внешняя часть состоит из двух элементов. Следующим этапом требуется найти те провода, с помощью которых двигатель соединяется с аккумулятором. Именно их нужно соединить с блоком питания (самоделкой), используя термоусадочную трубку. Также можно спаять провода. Скручивать их настоятельно не рекомендуется.

Чтобы вывести кабель наружу, потребуется сделать отверстие в корпусе шуруповёрта. Также рекомендуется установить предохранитель, который защитит провод от повреждений у основания. Для этого можно сделать специальную клипсу из тонкой алюминиевой проволоки.

Таким образом, переделка схемы балласта в импульсный блок поможет заменить повреждённый аккумулятор у шуруповёрта. К тому же, если учитывать все нюансы из области экономики во время изготовления, то можно утверждать, что сделать ИБП своими руками выгодно.

Блок питания из энергосберегающих ламп

Хорошо известные большинству пользователей энергосберегающие лампы, несмотря на свою популярность, довольно быстро приходят в негодность и обычно не поддаются окончательному восстановлению. Однако если в них перегорает всего лишь один светильник, а питающая его схема ЭПРА остаётся в относительной целостности, она может использоваться в качестве самостоятельного блока питания (смотрите фото).

Искусственное «продление жизни» энергосберегающих изделий, у которых сгорел только один осветитель, позволяет получить дешёвый и сравнительно мощный ИБП, выходное напряжение которого может выбираться произвольно.

Устройство и принцип работы

Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:

  • Входящая в энергосберегающие лампы электронная начинка гарантирует высокую нагрузочную способность изделия, работающего в режиме длительного (непрерывного) свечения;
  • Эффективность использования сетевого напряжения (КПД) в этом случае существенно повышается;
  • Встроенная схема энергосберегающей лампы позволяет получить компактное и лёгкое изделие (за счёт отсутствия громоздкого и тяжёлого трансформатора).

Дополнительная информация. Рассматриваемая энергосберегающая импульсная схема питания имеет только один небольшой недостаток, состоящий в её низкой надёжности и частом выходе из строя.

Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:

  • Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
  • Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
  • На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.

Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.

Схема ЭПРА

Принципиальный подход к повторному применению энергосберегающего изделия предполагает использование ещё не сгоревшей электронной платы в качестве импульсного источника питания.

Обратите внимание! Если включённая в осветительную сеть лампа пока ещё горит, но при этом начинает часто мигать и самостоятельно выключаться, это верный признак того, что с определённой вероятностью её можно отнести к уже перегорающим светильникам.

Для понимания того, как работают энергосберегающие лампы, потребуется разобраться с их электронной схемой (смотрите рисунок ниже).

Рабочая схема электронного балласта включает в свой состав следующие обязательные элементы:

  • Выпрямительный узел на диодах VD1-VD4, на который сетевое напряжение подаётся через дополнительный ограничивающий резистор R0;
  • Высоковольтный фильтрующий конденсатор (С0) и сглаживающий фильтр (L0);
  • Специальный транзисторный преобразователь, обеспечивающий формирование рабочих импульсов эсл (эта схема содержит целый ряд электронных деталей, облегчающих автозапуск колебаний частотой 20 кГц).

Диоды VD7 и VD6 выполняют защитную функцию, а трансформаторы TV1-1 и TV1-2 образуют цепи обратной связи, повышающей устойчивость процесса генерации. Красным цветом на рисунке, где изображена лампа (точнее её схема) выделен набор деталей, которые должны быть удалены при доработке электронного блока.

Читайте также:  Проводка по потолку в квартире: монтаж, схема разводки электрики, нормы и требования

Важно! Указанные на рисунке контрольные точки А–А` обязательно соединяются металлической перемычкой.

Особенности доработки электронного модуля

Выбор по мощности

Перед тем, как сделать блок питания из энергосберегающей лампы, в первую очередь, нужно будет определиться с той мощностью, которая потребуется от него в каждом конкретном случае. От этого параметра будет зависеть степень модернизации электронной части, обеспечивающая возможность нормальной эксплуатации подключаемого к ней оборудования.

Так, при небольшой рабочей мощности будущего блока питания переделка ЭПРА затронет лишь малую часть всей схемы (смотрите рисунок).

Если же предполагается сделать импульсный блок питания из энергосберегающей лампы, рассчитанный на значительные нагрузки (чтобы подключать импульсный паяльник, например), его нагрузочную характеристику необходимо увеличить. Для этого потребуется существенная доработка схемы ЭПРА в расчёте на выходную мощность более 50-ти Ватт.

Для расчета этого параметра следует вспомнить, что он определяется как произведение выходного тока на рабочее напряжение. То есть, если 50-ти ваттный импульсный паяльник рассчитан на напряжение 25 Вольт, то самодельный блок питания должен обеспечивать выходной ток не менее 2-х Ампер (модернизированная схема приводится ниже).

Помимо паяльника, от такого импульсного блока питания может работать любая низковольтная лампа средней мощности.

Какие детали потребуются

На доработанной схеме №1 новые детали выделены красным цветом и обозначают следующие элементы:

  • Диодный мост VD14-VD17;
  • Два конденсатора (простой и электролитический) С9 и С10;
  • Намотанная на балластном дросселе L5 дополнительная обмотка, число витков которой подбирается экспериментально.

Важно! Она выполняет функцию разделительного элемента, исключающего возможность попадания сетевого напряжения 220 Вольт на выход модуля питания.

Разберёмся с тем, что можно сделать, чтобы обезопасить выход БП от перегрузок за счёт правильного выбора числа витков выходной катушки.

Выбор параметров выходной катушки

Для вычисления нужного количество витков в съёмной обмотке L5 необходимо немного поэкспериментировать, то есть поступить следующим образом:

  • Сначала поверх имеющейся катушки нужно намотать порядка 10-ти витков любого провода в изоляции;
  • Затем следует нагрузить намотанную часть на реостат с сопротивлением 5-6 Ом и мощностью порядка 30 Ватт (для его подсоединения может использоваться метод пайки);
  • В результате получают конструкцию, изображённую на рисунке ниже;

  • После этого схему включают в сеть, а затем посредством тестера замеряют напряжение на реостате;
  • Полученное значение в вольтах делится на намотанное ранее число витков, в результате чего получается цифра, соответствующая удельному вольтажу на 1 виток.

В завершении эксперимента определяют требуемое количество витков, необходимых для получения заданного выходного напряжения путём деления его величины на полученный ранее результат.

Конструктивное исполнение обмотки

При доработке выходной катушки всегда нужно помнить о том, что первичная обмотка находится под высоким напряжением. Поэтому все её конструктивные изменения должны осуществляться только на отключенном от сети преобразовательном устройстве.

Обмотка по варианту исполнения №1

При намотке дополнительных витков на уже имеющийся в ЭПРА дроссель не следует забывать про межобмоточную изоляцию, которая обязательна для проводов типа ПЭЛ (в тонкой эмалевой изоляции).

В качестве такой изоляции, наматываемой в несколько слоёв, следует применять специальную ленту из политетрафторэтилена, нередко используемую для уплотнения резьбовых соединений.

Дополнительная информация. Такая изолирующая лента имеет толщину всего 0,2 мм и чаще всего используется при проведении ремонтных и сантехнических работ.

Готовая обмотка нагружается на диодный мостик, выпрямленное напряжение с которого поступает на нагрузку (это может быть обычная низковольтная лампочка, например). Выходная мощность в выполненном по этой схеме блоке питания обычно ограничивается размерами используемого трансформатора и допустимыми токами коммутируемого устройства на транзисторах TV1 и TV2.

Обмотка по варианту исполнения №2

Для получения блока питания большей мощности, к которому можно будет подключать импульсный паяльник, например, потребуется более сложная доработка (смотрите схему на приведённом ниже рисунке).

В состав дорабатываемой части схемы, выделенной на рисунке красным цветом, входят следующие элементы:

  • Дополнительный трансформатор TV2 с тремя обмотками (для его изготовления удобнее всего воспользоваться ферритовым кольцом с соответствующей магнитной проводимостью);
  • Два полупроводниковых выпрямляющих диода VD14 и VD15;
  • Сглаживающие конденсаторы C9 и C10 достаточной ёмкости.

Помимо этого обязательно нужно будет заменить коммутирующие транзисторы TV1 и TV2 на более мощные образцы с одновременной их установкой на охлаждающие радиаторы.

Обратите внимание! Для лучшего сглаживания пульсаций ёмкости большинства конденсаторов (включая выходные C9 и C10) необходимо будет немного увеличить.

В результате проведённой модернизации частично сгоревшая энергоэффективная лампа превращается в достаточно мощный блок питания (до 100 Ватт). При этом его выходное напряжение может принимать значения от 12-ти Вольт и выше при рабочем токе в нагрузке до 8-9 Ампер. Указанных параметров переделанного из сгоревшей лампы устройства вполне может хватить для питания простейшего шуруповерта, например.

В заключение отметим, что для того, чтобы использовать перегоревшую энергосберегающую лампу для самостоятельного изготовления импульсного блока питания (ибп), нужны определённые навыки обращения с электрическим паяльником. Помимо этого, потребуется умение разбираться с электронными схемами хотя бы на уровне понимания материала, приводимого в данном обзоре.

Видео

Инструкция по изготовлению импульсного блока питания из энергосберегающей лампы

Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

Импульсный блок и его назначение

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Далее представлена схема функционирования балласта люминесцентной лампочки.

Читайте также:  Какой кабель использовать для проводки в квартире: для освещения и для розеток, марки проводов, сечение

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 — выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 — выступают в качестве мостов-выпрямителей.
  3. L0, C0 — являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 — представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 — облегчают начало работы преобразователей.
  6. R7, R8 — оптимизируют закрытие транзисторов.
  7. R6, R5 — образуют границы для электротока на транзисторах.
  8. R4, R3 — используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 — защищают транзисторы БП от возвратного тока.
  10. TV1 — является обратным коммуникативным трансформатором.
  11. L5 — балластный дроссель.
  12. C4, C6 — выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 — трансформатор импульсного типа.
  14. VD14, VD15 — импульсные диоды.
  15. C9, C10 — фильтры-конденсаторы.

Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение — 12 В;
  • сила тока — 2 А.

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

Новые компоненты

На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

Самостоятельное изготовление блока питания

ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

Импульсный трансформатор

Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.

Импульсный трансформатор создается на основе дросселя, на который накладывается вторичная обмотка. В качестве таковой используется лакированный медный провод.

Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.

Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.

Выпрямитель

Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.

Читайте также:  Проводка в гараже своими руками: схема, что нужно, как провести, на 220В, разводка кабеля, пошаговая инструкция

Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.

Наладка источника бесперебойного питания

Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить — не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора — 65 градусов, а для транзисторов — 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант — сокращение нагрузки.

ИБП высокой мощности

В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

Потенциальные ошибки

Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.

Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Импульсный блок питания из энергосберегающей лампы


В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

Читайте также:  Проводка в ванной комнате своими руками: монтаж, схема, как правильно проложить, какое УЗО поставить

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Читайте также:  Проводка в деревянном доме своими руками: правила монтажа, открытая и внутренняя, разводка, ввод электричества, пошаговая инструкция и схемы

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

Как сделать блок питания из энергосберегающей лампы своими руками

Многие электрические устройства после поломки можно использовать повторно. Большинство из них могут стать ценным материалом, своего рода вторсырьем для вторичного использования. Можно ознакомиться на просторах интернета с разными инструкциями необычных самоделок на основе интересующих вас аппаратов. Так, народные умельцы быстро сообразили, что можно сделать блок питания (БП) из вышедшей из строя энергосберегающей лампы (ЭСЛ) своими руками.

Схемы энергосберегающих ламп можно назвать уже наполовину готовым блоком питания. Осталось сделать разделительный трансформатор, потом выпрямитель и удалить ненужные детали. Также помните, что для разработки БП следует выбирать ЭСЛ мощностью не менее чем на 20 Вт, другие лампы могут пойти на запасные части.

Выходное напряжение такого блока получится постоянным, переменное же напряжение в энергосберегающих лампах не предусмотрено. На практике встречается, что лампы от других производителей имеют разные схемы, но разница обычно не очень сильная.

Как сделать блок питания из энергосберегающей лампы

Может показаться, что это дело так называемых радиолюбителей, опытных мастеров работы со схемами, электроприборами.

Но на деле оказывается, что заниматься «оживлением» старой техники может практически любой человек, сталкивающийся в быту с электрическими устройствами. Достаточно работать по плану и иметь схему устройства перед глазами. Мы подготовили наглядную электросхему и поэтапный план работы над блоком из ЭСЛ.

Разбираем лампу

Будьте осторожны, когда разбираете ЭСЛ. Повредив целостность колбы, можно выпустить вредные пары ртути, которые быстро распространяются вокруг. Рекомендуем аккуратно, не спеша поддевать маленькой отверткой в месте шва.

Когда вам открылась схема, соединенная с колбой четырьмя выводами питания, отрежьте их и внимательно рассмотрите состояние элементов. Внешне можно понять, что они вышли из строя, по подгоревшим местам, вздутиям; могут отпаяться концы соединений. После внешнего осмотра необходимо прозвонить электрическую цепь. По опыту радиолюбителей в ЭСЛ часто портятся конденсаторы и резисторы.

Выходят из строя чаще всего именно конденсаторы и резисторы по причине частых включений и выключений энергосберегающей лампы. Если реже «щелкать выключателем», можно сохранить жизнь ЭСЛ на чуть более долгий срок.

Запасные элементы берутся из схем других энергосберегающих ламп, отложенных вами для будущего блока питания. После того, как из нескольких схем соберете одну, можно двигаться дальше.

Читайте также:  Проводка в ванной комнате своими руками: монтаж, схема, как правильно проложить, какое УЗО поставить

Вам нужно решить, блок питания какой мощности вы хотели бы собрать. Если мощность блока равна мощности энергосберегающей лампочки, то больших изменений не потребуется; если же захотите увеличить мощность блока питания, то нужно добавить вторичную обмотку, выложенную медным проводником.

Подготовительные работы

Итак, мы уже удалили контакты, идущие до колбы. Красным на схеме изображен удаленный нами узел ЭСЛ. На оставшиеся концы в схеме садим перемычку. Для повышения выдаваемой мощности нужно добавить к дросселю (на схеме L5) дополнительную (вторичную) обмотку. Появится резерв мощности блока питания за счет нее.

Помимо этого, добавляем новые детали в схему:

  • конденсаторы (на схеме C9, С10)
  • мост диодный (VD14-VD17)

Поместите изоляцию между обмотками. Советуем использовать политетрафторэтиленовую ленту.

Нужное количество витков для вторичной обмотки определяется в несколько этапов:

  1. Укладывается временная обмотка около десяти витков и соединяется с нагрузочным сопротивлением, имеющим характеристики в пределах 30-ти ватт и более, и собственно самим сопротивлением от 5 до 6 Ом;
  2. После подключения питания измеряется напряжение на нагрузочном сопротивлении;
  3. Полученные цифры напряжения делятся на число витков – так узнается, какое напряжение приходит на один виток;
  4. Расчет нужного количества витков для питания постоянной обмотки и подбор диаметра проводника для вторичной обмотки.

Диаметр вторичной обмотки советуем выбрать 0,5 мм.

Количество нужных витков:

X = Uвых (достигаемое напряжение БП) /Uвит (напряжение одного витка)

Кардинальные преобразования

Однако надёжней сделать импульсный блок питания с нуля, поискав трансформатор с нужными характеристиками в старой электронике. Заводские трансформаторы будут гораздо долговечней самоделки. И не нужно к тому же высчитывать количество витков по формуле, достаточно присоединить паяльником концы обмотки трансформатора к схеме.

Если вы хотите сильно увеличить мощность блока питания, в несколько раз, то нужно выпаять старый дроссель и присоединить новый (на схеме ниже обозначен как TV2). Подсоединяем к блоку два диода, составляющих выходной выпрямитель (на схеме VD14, VD15), заменяем диоды на входном выпрямителе с большей мощностью (на схеме RO) и ставим конденсатор с большей емкостью (на схеме CO). Подбирать конденсатор необходимо в пропорциях 1 Ватт выходной мощности = 1 микрофарад. На схеме изображено сто микрофарад на сто ватт.

Опробовать блок питания можно на лампочке аналогичной мощности. Главное следить за тем, чтобы температура трансформатора нашего блока не превышала 60ºС, а транзисторов 80ºС. Измеряется температура ртутными либо спиртовыми термометрами. Также есть так называемые заводские термопары и термосопротивления. Опытный радиолюбитель всегда имеет такие приспособления под рукой.

Советуем посмотреть видео-инструкцию:

Что можно еще сделать из энергосберегающей лампы

Из нескольких неисправных ЭСЛ можно собрать одну работающую. Радиолюбители делают, например, такие самоделки, как усилитель низких частот, драйвер для питания и управления светодиода. Из цоколя можно сделать маломощный удлинитель для блока зарядки и мобильных устройств, ноутбуков и так далее; такой удлинитель получает питание не от розетки, а патрона, что очень пригодится в поездках за границу, где могут отличаться стандарты розеток от стандартов российских. Импульсный блок питания, сделанный из энергосберегающих ламп, используют ещё для работы шуруповерта.

Мы хотели бы рассказать о такой самоделке от народных умельцев, как импульсный паяльник.

Импульсный паяльник

Для начала перечислим его преимущества над обычным паяльником:

  • Быстрый прогрев жала и такое же быстрое остывание при отключении питания;
  • Электроэнергия используется только в момент пайки;
  • Жало легко меняется, на замену подойдет кусочек медной проволоки 3–3,5 мм 2 .

Импульсные паяльники приобрели широкую известность, несмотря на то, что имеют пару досадных недостатков: они тяжелей обычных паяльников и не подходят для пайки микросхем, очень чувствительных к перегреву. Но всё-таки преимущества нивелируют эти недостатки; среди знающих людей всё чаще встречаются эти типы паяльников.

Из деталей ЭСЛ нам понадобится только балласт (преобразователь). Отдельно собирается трансформатор, преобразующий 220 вольт в любое низкое напряжение.

  • Медные провода сечением 3–3,5 мм 2 и 2 мм 2 ;
  • Шнур с вилкой;
  • Рукоять с кнопкой.

Для сборки трансформатора необходимо сначала поискать парочку ферритовых колец. Первичную обмотку намотать на одно кольцо; обмотку сделать до 120 витков. Не забываем про изоляцию между обмотками, для неё можно использовать политетрафторэтиленовую ленту. Для вторичной обмотки понадобится всего один виток медной проволочки диаметром 3 – 3, 5 мм 2 . Вторичную обмотку тоже нужно изолировать. К ней и будет крепиться жало паяльника, сделанное из медной проволочки 2 мм.

Первичная обмотка присоединяется к выходным контактам преобразователя. Ко вторичной обмотке болтами или цангой прикрепляется жало.

Контакты внутри пистолетной рукояти соединяются с первичной обмоткой трансформатора, с другой стороны цепи – через кнопку – идет соединение со шнуром, вилка которого подключается в сеть питания на 220В.

Получиться может, например, такой самодельный аппарат:

Импульсный паяльник готов!

В заключение

Радиолюбители практически любое сломанное устройство могут использовать повторно, дать ему вторую жизнь. Прежде чем выбрасывать какой-то прибор, присмотритесь к нему, не поленитесь найти в интернете информацию о том, что можно сделать из него, какие детали использовать для будущего самодельного устройства, найдите электрическую схему.

В наше время люди часто выбрасывают отработавшую технику и электронику, которые увозятся на мусорные полигоны, там без толку гниют. Особенно это касается энергосберегающих ламп и прочих маленьких бытовых устройств.

Можно сдавать в металлолом, в пункты приема отработавших электроприборов, но правильней всего научиться использовать каждую деталь по максимуму, пока они совсем не станут непригодными для работы. Можно сделать пробу на энергосберегающей лампе, превратив её в импульсный блок питания.

Оставляйте комментарии и делитесь со статьей в социальных сетях. И помните, что любая техника может использоваться повторно!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: